Áp dụng các trường hợp đồng dạng của tam giác vào tam giác vuông

1. Lý thuyết

- Trường hợp hai cạnh góc vuông:

Nếu hai cạnh góc vuông của tam giác vuông này tỉ lệ với hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.

 1_14.png

- Trường hợp góc – góc:

Nếu tam giác vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.

 1_15.png

2. Ví dụ minh họa

Ví dụ 1: Cho tam giác ${ABC}$ vuông tại ${A}$ có ${AB = 1}$ cm, ${AC = 3}$ cm. Trên cạnh ${AC}$ lấy ${D}$, ${E}$ sao cho ${AD = DE = EC}$. Chứng minh

a) $\Delta DBE\backsim \Delta DCB$;                  b) $\widehat{AEB}+\widehat{ACB}={{45}^{0}}$.

Lời giải.

1_16.png

a) Tính được ${DB^2 = 2}$, từ đó ta có

$D{{B}^{2}}=DE\cdot DC\Rightarrow \frac{DB}{DE}=\frac{DC}{DB}\Rightarrow \Delta DBE\backsim \Delta DCB$ (c.g.c).

b) Từ câu a), ta có

$\widehat{AEB}=\widehat{DBC}\text{ }\Rightarrow \widehat{AEB}+\widehat{ACB}=\widehat{DBC}+\widehat{ACB}=\widehat{ADB}={{45}^{0}}$.

Ví dụ 2: Cho tam giác ${ABC}$ vuông tại ${A}$, đường cao ${AH}$. Tia phân giác của ${\widehat{B}}$ cắt ${AH}$, ${AC}$ lần lượt tại ${D}$, ${E}$.

a) Chứng minh $\Delta BAD\backsim \Delta BCE$ và \(\Delta BHD\backsim \Delta BAE\).

b) Chứng minh ${\frac{DH}{DA}=\frac{EA}{EC}}$.

Lời giải

1_17.png

a) Xét $\Delta BAD$ và $\Delta BCE$ có ${\widehat{ABD}=\widehat{EBC}}$ và ${\widehat{BAD}=\widehat{ECB}}$ (góc có cặp cạnh tương ứng vuông góc) $\Rightarrow \Delta BAD\backsim \Delta BCE$ (g.g).

Xét $\Delta BHD$ và $\Delta BAE$ có $\widehat{BHD}=\widehat{BAE}={{90}^{0}}$

và $\widehat{HBD}=\widehat{ABE}\Rightarrow \Delta BAD\backsim \Delta BCE$ (g.g).

b) Từ kết quả câu a), ta có ${\frac{DH}{EA}=\frac{BD}{BE}=\frac{DA}{CE} \Rightarrow \frac{DH}{DA}=\frac{EA}{EC}}$.