- Trang chủ
- Lớp 8
- Toán học Lớp 8
- Lý thuyết Toán 8 Lớp 8
- Chương 9. Tam giác đồng dạng
- Các trường hợp đồng dạng của tam giác vuông
-
Chương 1. Đa thức
-
Chương 2. Hằng đẳng thức đáng nhớ và ứng dụng
-
Các hằng đẳng thức đáng nhớ
-
Phân tích đa thức thành nhân tử
- 1. Phân tích đa thức thành nhân tử là gì? Phương pháp đặt nhân tử chung là gì? Phân tích đa thức thành nhân tử như thế nào?
- 2. Phân tích đa thức thành nhân tử là gì? Phương pháp sử dụng hằng đẳng thức là gì? Phân tích đa thức thành nhân tử bằng cách sử dụng hằng đẳng thức như thế nào?
- 3. Phân tích đa thức thành nhân tử là gì? Phương pháp nhóm hạng tử là gì? Phân tích đa thức thành nhân tử bằng cách nhóm hạng tử như thế nào?
-
-
Chương 3. Tứ giác
-
Chương 4. Định lí Thalès
-
Chương 5. Dữ liệu và biểu đồ
-
Chương 6. Phân thức đại số
-
Chương 7. Phương trình bậc nhất và hàm số bậc nhất
-
Chương 8. Mở đầu về tính xác suất của biến cố
-
Chương 9. Tam giác đồng dạng
-
Chương 10. Một số hình khối trong thực tiễn
Áp dụng các trường hợp đồng dạng của tam giác vào tam giác vuông
1. Lý thuyết
- Trường hợp hai cạnh góc vuông:
Nếu hai cạnh góc vuông của tam giác vuông này tỉ lệ với hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.
- Trường hợp góc – góc:
Nếu tam giác vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.
2. Ví dụ minh họa
Ví dụ 1: Cho tam giác ${ABC}$ vuông tại ${A}$ có ${AB = 1}$ cm, ${AC = 3}$ cm. Trên cạnh ${AC}$ lấy ${D}$, ${E}$ sao cho ${AD = DE = EC}$. Chứng minh
a) $\Delta DBE\backsim \Delta DCB$; b) $\widehat{AEB}+\widehat{ACB}={{45}^{0}}$.
Lời giải.
a) Tính được ${DB^2 = 2}$, từ đó ta có
$D{{B}^{2}}=DE\cdot DC\Rightarrow \frac{DB}{DE}=\frac{DC}{DB}\Rightarrow \Delta DBE\backsim \Delta DCB$ (c.g.c).
b) Từ câu a), ta có
$\widehat{AEB}=\widehat{DBC}\text{ }\Rightarrow \widehat{AEB}+\widehat{ACB}=\widehat{DBC}+\widehat{ACB}=\widehat{ADB}={{45}^{0}}$.
Ví dụ 2: Cho tam giác ${ABC}$ vuông tại ${A}$, đường cao ${AH}$. Tia phân giác của ${\widehat{B}}$ cắt ${AH}$, ${AC}$ lần lượt tại ${D}$, ${E}$.
a) Chứng minh $\Delta BAD\backsim \Delta BCE$ và \(\Delta BHD\backsim \Delta BAE\).
b) Chứng minh ${\frac{DH}{DA}=\frac{EA}{EC}}$.
Lời giải
a) Xét $\Delta BAD$ và $\Delta BCE$ có ${\widehat{ABD}=\widehat{EBC}}$ và ${\widehat{BAD}=\widehat{ECB}}$ (góc có cặp cạnh tương ứng vuông góc) $\Rightarrow \Delta BAD\backsim \Delta BCE$ (g.g).
Xét $\Delta BHD$ và $\Delta BAE$ có $\widehat{BHD}=\widehat{BAE}={{90}^{0}}$
và $\widehat{HBD}=\widehat{ABE}\Rightarrow \Delta BAD\backsim \Delta BCE$ (g.g).
b) Từ kết quả câu a), ta có ${\frac{DH}{EA}=\frac{BD}{BE}=\frac{DA}{CE} \Rightarrow \frac{DH}{DA}=\frac{EA}{EC}}$.