- Trang chủ
- Lớp 7
- Toán học Lớp 7
- Tài liệu Dạy - học Toán 7 Lớp 7
- CHƯƠNG 2. TAM GIÁC
- Chủ đề 4. Tam giác cân - Định lý Pythagore
-
CHƯƠNG 1. SỐ HỮU TỈ - SỐ THỰC
-
CHƯƠNG 2: HÀM SỐ VÀ ĐỒ THỊ
-
CHƯƠNG 1: ĐƯỜNG THẲNG VUÔNG GÓC – ĐƯỜNG THẲNG SONG SONG
-
CHƯƠNG 2. TAM GIÁC
-
Chủ đề 3: Tam giác - Tam giác bằng nhau
- 1. Tổng ba góc trong một tam giác
- 2. Hai tam giác bằng nhau
- 3. Trường hợp bằng nhau thứ nhất của tam giác: Cạnh - cạnh - cạnh (c.c.c)
- 4. Trường hợp bằng nhau thứ hai của tam giác: Cạnh - góc - cạnh (c.g.c)
- 5. Trường hợp bằng nhau thứ ba của tam giác: Góc - góc - góc (g.g.g)
- Bài tập - Chủ đề 3: Tam giác - Tam giác bằng nhau
- Luyện tập - Chủ đề 3: Tam giác - Tam giác bằng nhau
-
Chủ đề 4. Tam giác cân - Định lý Pythagore
-
Ôn tập chương 2 - Hình học 7
-
-
CHƯƠNG 3: THỐNG KÊ
-
CHƯƠNG 4. BIỂU THỨC ĐẠI SỐ
-
CHƯƠNG 3: QUAN HỆ GIỮA CÁC YẾU TỐ TRONG TAM GIÁC – CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC
-
Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
- 1. Quan hệ giữa góc và cạnh trong một tam giác
- 2. Quan hệ giữa đường vuông góc và đường xiên – Giữa đường xiên và hình chiếu
- 3. Quan hệ giữa ba cạnh của một tam giác bất đẳng thức tam giác
- Bài tập - Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
- Luyện tập - Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
-
Chủ đề 6 : Các đường đồng quy của tam giác
- 1. Tính chất ba đường trung tuyến của tam giác
- 2. Tính chất tia phân giác của một góc
- 3. Tính chất ba đường phân giác của tam giác
- 4. Tính chất đường trung trực của một đoạn thẳng
- 5. Tính chất ba đường trung trực của tam giác
- 6. Tính chất ba đường cao trong tam giác
- Bài tập - Chủ đề 6 : Các đường đồng quy của tam giác
- Luyện tập - Chủ đề 6 : Các đường đồng quy của tam giác
-
Ôn tập chương 3 – Hình học
-
-
ÔN TẬP CUỐI NĂM - TÀI LIỆU DẠY-HỌC TOÁN 7
Bài 10 * trang 172 Tài liệu dạy – học Toán 7 tập 1
Đề bài
Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC. Tên tia đối của tia MA lấy điểm D sao cho MD = MA. Trên tia đối của tia CD lấy điểm E sao cho CE = CA.
a) Chứng minh rằng tam giác ACE vuông cân.
b) Kẻ AH vuông góc với BC. Đường thẳng kẻ từ E song song với AC cắt đường thẳng AH tại F. Chứng minh rằng AF = BC.
Lời giải chi tiết
a)Xét tam giác AMC và DMB ta có:
AM = DM (giả thiết)
\(\widehat {AMC} = \widehat {DMB}\) (hai góc đối đỉnh)
MC = MB (M là trung điểm của BC)
Do đó: \(\eqalign{ & \Delta AMC = \Delta DMB(c.g.c) \cr & \Rightarrow \widehat {ACM} = \widehat {MBD} \cr} \)
Mà hai góc ACM và MBD so le trong nên AC // BD.
Ta có: \(BA \bot AC(\Delta ABC\) vuông tại A)
AC // BD (chứng minh trên)
\(\Rightarrow CD \bot AC\)
Vậy tam giác ACE vuông tại C.
Ta có: tam giác ACE vuông tại C có: CA = CE (giả thiết)
Do đó: tam giác ACE vuông cân tại C.
b) Gọi N là giao điểm của AB và EF.
Ta có: EF // AC (gt), \(AB \bot AC(\widehat {BAC} = {90^0}) \Rightarrow AB \bot EF\)
Xét tam giác NAE vuông tại N và tam giác CEA vuông tại C có:
AE là cạnh chung.
\(\widehat {AEN} = \widehat {EAC}\) (so le trong và EF // AC)
Do đó: \(\Delta NAE = \Delta CEA\) (cạnh huyền - góc nhọn) => AN = CE.
Ta có: AN = CA (= CE).
Xét tam giác NFA và ABC có:
\(\widehat {FNA} = \widehat {BAC}( = {90^0})\)
AN = CA
\(\widehat {NAF} = \widehat {ACB}\) (cùng phụ với góc HAC)
Do đó: \(\Delta NFA = \Delta ABC(g.c.g)\) . Vậy AF = BC.