- Trang chủ
- Lớp 11
- Toán học Lớp 11
- SGK Toán Lớp 11
- Giải Toán 11 tập 2
- Chương VIII. Quan hệ vuông góc trong không gian
-
Toán 11 tập 1
-
Giải Toán 11 tập 2
Bài 8.4 trang 54 SGK Toán 11 tập 2 - Cùng khám phá
Đề bài
Cho tứ diện \(ABCD\) có \(AC = a,BD = 3a\). \(M,N\) lần lượt là trung điểm của \(AD\) và \(BC\). Biết \(AC\) vuông góc với \(BD\), tính \(MN\).
Phương pháp giải - Xem chi tiết
Gọi \(P\) là trung điểm của \(CD\).
Chứng minh \(NP//BD,MP//AC\) suy ra \(\left( {AC,BD} \right) = \left( {MP,NP} \right) = \widehat {MPN}\)
Dựa vào \(AC \bot BD \Rightarrow \widehat {MPN} = {90^o}\)
Dựa vào \(\Delta MNP\) vuông tại \(P\) để tính \(MN\)
Lời giải chi tiết
Gọi \(P\) là trung điểm của \(CD\)
\( \Rightarrow NP\) là đường trung bình của \(\Delta BCD \Rightarrow NP//BD,NP = \frac{1}{2}BD = \frac{{3a}}{2}\)
Vì \(P\) là trung điểm của \(CD\)
\( \Rightarrow MP\) là đường trung bình của \(\Delta ACD \Rightarrow MP//AC,NP = \frac{1}{2}AC = \frac{a}{2}\)
Vì \(NP//BD,MP//AC\) suy ra \(\left( {AC,BD} \right) = \left( {MP,NP} \right) = \widehat {MPN}\)
Mà \(AC \bot BD \Rightarrow \widehat {MPN} = {90^o}\)\( \Rightarrow \Delta MNP\) vuông tại \(P\)
\( \Rightarrow M{N^2} = M{P^2} + N{P^2} = {\left( {\frac{a}{2}} \right)^2} + {\left( {\frac{{3a}}{2}} \right)^2} = \frac{{10{a^2}}}{4}\)\( \Rightarrow MN = \frac{{a\sqrt {10} }}{2}\)