- Trang chủ
- Lớp 7
- Toán học Lớp 7
- Tài liệu Dạy - học Toán 7 Lớp 7
- CHƯƠNG 2. TAM GIÁC
- Chủ đề 3: Tam giác - Tam giác bằng nhau
-
CHƯƠNG 1. SỐ HỮU TỈ - SỐ THỰC
-
CHƯƠNG 2: HÀM SỐ VÀ ĐỒ THỊ
-
CHƯƠNG 1: ĐƯỜNG THẲNG VUÔNG GÓC – ĐƯỜNG THẲNG SONG SONG
-
CHƯƠNG 2. TAM GIÁC
-
Chủ đề 3: Tam giác - Tam giác bằng nhau
- 1. Tổng ba góc trong một tam giác
- 2. Hai tam giác bằng nhau
- 3. Trường hợp bằng nhau thứ nhất của tam giác: Cạnh - cạnh - cạnh (c.c.c)
- 4. Trường hợp bằng nhau thứ hai của tam giác: Cạnh - góc - cạnh (c.g.c)
- 5. Trường hợp bằng nhau thứ ba của tam giác: Góc - góc - góc (g.g.g)
- Bài tập - Chủ đề 3: Tam giác - Tam giác bằng nhau
- Luyện tập - Chủ đề 3: Tam giác - Tam giác bằng nhau
-
Chủ đề 4. Tam giác cân - Định lý Pythagore
-
Ôn tập chương 2 - Hình học 7
-
-
CHƯƠNG 3: THỐNG KÊ
-
CHƯƠNG 4. BIỂU THỨC ĐẠI SỐ
-
CHƯƠNG 3: QUAN HỆ GIỮA CÁC YẾU TỐ TRONG TAM GIÁC – CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC
-
Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
- 1. Quan hệ giữa góc và cạnh trong một tam giác
- 2. Quan hệ giữa đường vuông góc và đường xiên – Giữa đường xiên và hình chiếu
- 3. Quan hệ giữa ba cạnh của một tam giác bất đẳng thức tam giác
- Bài tập - Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
- Luyện tập - Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
-
Chủ đề 6 : Các đường đồng quy của tam giác
- 1. Tính chất ba đường trung tuyến của tam giác
- 2. Tính chất tia phân giác của một góc
- 3. Tính chất ba đường phân giác của tam giác
- 4. Tính chất đường trung trực của một đoạn thẳng
- 5. Tính chất ba đường trung trực của tam giác
- 6. Tính chất ba đường cao trong tam giác
- Bài tập - Chủ đề 6 : Các đường đồng quy của tam giác
- Luyện tập - Chủ đề 6 : Các đường đồng quy của tam giác
-
Ôn tập chương 3 – Hình học
-
-
ÔN TẬP CUỐI NĂM - TÀI LIỆU DẠY-HỌC TOÁN 7
Bài tập 11 trang 157 Tài liệu dạy – học Toán 7 tập 1
Đề bài
Cho tam giác ABC nhọn. Gọi D là trung điểm của BC. Trên tia đối của tia DA lấy điểm E sao cho DE = DA.
a) Chứng minh rằng AB // EC.
b) Kẻ AH và EK cùng vuông góc với BC \((H \in BC,K \in BC)\) . Chứng minh rằng AH = EK.
c) Trên AC lấy điểm M, trên BE lấy điểm N sao cho AM = EN. Chứng minh rằng ba điểm M, D, N thẳng hàng.
Lời giải chi tiết
a)Xét tam giác ABD và ECD có:
BD = CD (D là trung điểm của BC)
\(\widehat {BDA} = \widehat {CDE}\) (hai góc đối đỉnh)
AD = ED (giả thiết)
Do đó: \(\Delta ABD = \Delta ECD(c.g.c) \Rightarrow \widehat {ABD} = \widehat {ECD}\)
Mà \(\widehat {ABD}\) và \(\widehat {ECD}\) so le trong do đó: AB // CE.
b) Xét hai tam giác vuông HAD và KED có:
AD = DE (giả thiết)
\(\widehat {HDA} = \widehat {KDE}\) (hai góc đối đỉnh)
Do đó: \(\Delta HAD = \Delta KED\) (cạnh huyền - góc nhọn) => AH = EK.
c) Xét hai tam giác MDA và NDE có:
MA = NE (giả thiết)
AD = DE (giả thiết)
\(\widehat {MAD} = \widehat {NED}\) (hai góc so le trong và AC // BE)
Do đó: \(\Delta MDA = \Delta NDE(c.g.c) \Rightarrow \widehat {MDA} = \widehat {NDE}\)
Mà \(\widehat {MDA} + \widehat {MDE} = {180^0}\) (hai góc kề bù)
Do đó: \(\widehat {NDE} + \widehat {MDE} = {180^0} \Rightarrow \) Hai tia DM, DN đối nhau.
Vậy ba điểm M, D, N thẳng hàng.