- Trang chủ
- Lớp 7
- Toán học Lớp 7
- Tài liệu Dạy - học Toán 7 Lớp 7
- CHƯƠNG 2: HÀM SỐ VÀ ĐỒ THỊ
- Chủ đề 4: Tỉ lệ thuận
-
CHƯƠNG 1. SỐ HỮU TỈ - SỐ THỰC
-
CHƯƠNG 2: HÀM SỐ VÀ ĐỒ THỊ
-
CHƯƠNG 1: ĐƯỜNG THẲNG VUÔNG GÓC – ĐƯỜNG THẲNG SONG SONG
-
CHƯƠNG 2. TAM GIÁC
-
Chủ đề 3: Tam giác - Tam giác bằng nhau
- 1. Tổng ba góc trong một tam giác
- 2. Hai tam giác bằng nhau
- 3. Trường hợp bằng nhau thứ nhất của tam giác: Cạnh - cạnh - cạnh (c.c.c)
- 4. Trường hợp bằng nhau thứ hai của tam giác: Cạnh - góc - cạnh (c.g.c)
- 5. Trường hợp bằng nhau thứ ba của tam giác: Góc - góc - góc (g.g.g)
- Bài tập - Chủ đề 3: Tam giác - Tam giác bằng nhau
- Luyện tập - Chủ đề 3: Tam giác - Tam giác bằng nhau
-
Chủ đề 4. Tam giác cân - Định lý Pythagore
-
Ôn tập chương 2 - Hình học 7
-
-
CHƯƠNG 3: THỐNG KÊ
-
CHƯƠNG 4. BIỂU THỨC ĐẠI SỐ
-
CHƯƠNG 3: QUAN HỆ GIỮA CÁC YẾU TỐ TRONG TAM GIÁC – CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC
-
Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
- 1. Quan hệ giữa góc và cạnh trong một tam giác
- 2. Quan hệ giữa đường vuông góc và đường xiên – Giữa đường xiên và hình chiếu
- 3. Quan hệ giữa ba cạnh của một tam giác bất đẳng thức tam giác
- Bài tập - Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
- Luyện tập - Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
-
Chủ đề 6 : Các đường đồng quy của tam giác
- 1. Tính chất ba đường trung tuyến của tam giác
- 2. Tính chất tia phân giác của một góc
- 3. Tính chất ba đường phân giác của tam giác
- 4. Tính chất đường trung trực của một đoạn thẳng
- 5. Tính chất ba đường trung trực của tam giác
- 6. Tính chất ba đường cao trong tam giác
- Bài tập - Chủ đề 6 : Các đường đồng quy của tam giác
- Luyện tập - Chủ đề 6 : Các đường đồng quy của tam giác
-
Ôn tập chương 3 – Hình học
-
-
ÔN TẬP CUỐI NĂM - TÀI LIỆU DẠY-HỌC TOÁN 7
Bài tập 12 trang 68 Tài liệu dạy – học Toán 7 tập 1
Đề bài
Hùng 12 tuổi và có em là Dũng mới 8 tuổi. Ngày tết ba Hùng và Dũng mừng tuổi chung cho hai anh em 100000 đồng và bảo chia tỉ lệ theo số tuổi. Hỏi mỗi em có bao nhiêu tiền ?
Lời giải chi tiết
Gọi số tiền mừng tuổi của Hùng và Dũng lần lượt là: a, b (đồng)
(Điều kiện a, b > 0), ta có: a + b = 100000
Do số tuổi tỉ lệ thuận với số tiền nên theo đề bài ta có: \({a \over {12}} = {b \over 8}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có: \({a \over {12}} = {b \over 8} = {{a + b} \over {12 + 8}} = {{100000} \over {20}} = 5000\)
\(\eqalign{ & {a \over {12}} = 5000 \Rightarrow a = 12.5000 = 60000 \cr & {b \over 8} = 5000 \Rightarrow b = 8.5000 = 40000 \cr} \)
Vậy số tiền mừng tuổi của Hùng và Dũng là 60000 đồng và của Dũng là 40000 đồng.