- Trang chủ
- Lớp 7
- Toán học Lớp 7
- Tài liệu Dạy - học Toán 7 Lớp 7
- CHƯƠNG 1: ĐƯỜNG THẲNG VUÔNG GÓC – ĐƯỜNG THẲNG SONG SONG
- Chủ đề 1: Góc tạo bởi các đường thẳng
-
CHƯƠNG 1. SỐ HỮU TỈ - SỐ THỰC
-
CHƯƠNG 2: HÀM SỐ VÀ ĐỒ THỊ
-
CHƯƠNG 1: ĐƯỜNG THẲNG VUÔNG GÓC – ĐƯỜNG THẲNG SONG SONG
-
CHƯƠNG 2. TAM GIÁC
-
Chủ đề 3: Tam giác - Tam giác bằng nhau
- 1. Tổng ba góc trong một tam giác
- 2. Hai tam giác bằng nhau
- 3. Trường hợp bằng nhau thứ nhất của tam giác: Cạnh - cạnh - cạnh (c.c.c)
- 4. Trường hợp bằng nhau thứ hai của tam giác: Cạnh - góc - cạnh (c.g.c)
- 5. Trường hợp bằng nhau thứ ba của tam giác: Góc - góc - góc (g.g.g)
- Bài tập - Chủ đề 3: Tam giác - Tam giác bằng nhau
- Luyện tập - Chủ đề 3: Tam giác - Tam giác bằng nhau
-
Chủ đề 4. Tam giác cân - Định lý Pythagore
-
Ôn tập chương 2 - Hình học 7
-
-
CHƯƠNG 3: THỐNG KÊ
-
CHƯƠNG 4. BIỂU THỨC ĐẠI SỐ
-
CHƯƠNG 3: QUAN HỆ GIỮA CÁC YẾU TỐ TRONG TAM GIÁC – CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC
-
Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
- 1. Quan hệ giữa góc và cạnh trong một tam giác
- 2. Quan hệ giữa đường vuông góc và đường xiên – Giữa đường xiên và hình chiếu
- 3. Quan hệ giữa ba cạnh của một tam giác bất đẳng thức tam giác
- Bài tập - Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
- Luyện tập - Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
-
Chủ đề 6 : Các đường đồng quy của tam giác
- 1. Tính chất ba đường trung tuyến của tam giác
- 2. Tính chất tia phân giác của một góc
- 3. Tính chất ba đường phân giác của tam giác
- 4. Tính chất đường trung trực của một đoạn thẳng
- 5. Tính chất ba đường trung trực của tam giác
- 6. Tính chất ba đường cao trong tam giác
- Bài tập - Chủ đề 6 : Các đường đồng quy của tam giác
- Luyện tập - Chủ đề 6 : Các đường đồng quy của tam giác
-
Ôn tập chương 3 – Hình học
-
-
ÔN TẬP CUỐI NĂM - TÀI LIỆU DẠY-HỌC TOÁN 7
Bài tập 3 trang 115 Tài liệu dạy – học Toán 7 tập 1
Đề bài
Cho hai đường thẳng cắt nhau, trong bốn góc tạo thành có một góc có số đo bằng 50o.
a) Hãy kể tên các cặp góc đối đỉnh.
b) Tính số đo của ba góc còn lại.
Lời giải chi tiết
a)\(\widehat {AOB}\) và \(\widehat {DOC}\) là hai góc đối đỉnh.
\(\widehat {AOD}\) và \(\widehat {BOC}\) là hai góc đối đỉnh.
b) Giả sử \(\widehat {AOB} = {50^0}\)
Cần tính số đo các góc AOD, DOC, BOC.
Hai góc AOB và AOD là hai góc kề bù.
\( \Rightarrow \widehat {AOB} + \widehat {AOD} = {180^0}\)
Do đó: \(\widehat {AOD} = {180^0} - {50^0} = {130^0}\)
Ta có: \(\widehat {DOC} = \widehat {AOB}\) (hai góc đối đỉnh) nên \(\widehat {DOC} = {50^0}\)
Mặt khác \(\widehat {BOC} = \widehat {AOD}\) (hai góc đối đỉnh) nên \(\widehat {BOC} = {130^0}\)