- Trang chủ
- Lớp 7
- Toán học Lớp 7
- Tài liệu Dạy - học Toán 7 Lớp 7
- CHƯƠNG 3: QUAN HỆ GIỮA CÁC YẾU TỐ TRONG TAM GIÁC – CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC
- Chủ đề 6 : Các đường đồng quy của tam giác
-
CHƯƠNG 1. SỐ HỮU TỈ - SỐ THỰC
-
CHƯƠNG 2: HÀM SỐ VÀ ĐỒ THỊ
-
CHƯƠNG 1: ĐƯỜNG THẲNG VUÔNG GÓC – ĐƯỜNG THẲNG SONG SONG
-
CHƯƠNG 2. TAM GIÁC
-
Chủ đề 3: Tam giác - Tam giác bằng nhau
- 1. Tổng ba góc trong một tam giác
- 2. Hai tam giác bằng nhau
- 3. Trường hợp bằng nhau thứ nhất của tam giác: Cạnh - cạnh - cạnh (c.c.c)
- 4. Trường hợp bằng nhau thứ hai của tam giác: Cạnh - góc - cạnh (c.g.c)
- 5. Trường hợp bằng nhau thứ ba của tam giác: Góc - góc - góc (g.g.g)
- Bài tập - Chủ đề 3: Tam giác - Tam giác bằng nhau
- Luyện tập - Chủ đề 3: Tam giác - Tam giác bằng nhau
-
Chủ đề 4. Tam giác cân - Định lý Pythagore
-
Ôn tập chương 2 - Hình học 7
-
-
CHƯƠNG 3: THỐNG KÊ
-
CHƯƠNG 4. BIỂU THỨC ĐẠI SỐ
-
CHƯƠNG 3: QUAN HỆ GIỮA CÁC YẾU TỐ TRONG TAM GIÁC – CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC
-
Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
- 1. Quan hệ giữa góc và cạnh trong một tam giác
- 2. Quan hệ giữa đường vuông góc và đường xiên – Giữa đường xiên và hình chiếu
- 3. Quan hệ giữa ba cạnh của một tam giác bất đẳng thức tam giác
- Bài tập - Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
- Luyện tập - Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
-
Chủ đề 6 : Các đường đồng quy của tam giác
- 1. Tính chất ba đường trung tuyến của tam giác
- 2. Tính chất tia phân giác của một góc
- 3. Tính chất ba đường phân giác của tam giác
- 4. Tính chất đường trung trực của một đoạn thẳng
- 5. Tính chất ba đường trung trực của tam giác
- 6. Tính chất ba đường cao trong tam giác
- Bài tập - Chủ đề 6 : Các đường đồng quy của tam giác
- Luyện tập - Chủ đề 6 : Các đường đồng quy của tam giác
-
Ôn tập chương 3 – Hình học
-
-
ÔN TẬP CUỐI NĂM - TÀI LIỆU DẠY-HỌC TOÁN 7
Bài tập 33 trang 124 Tài liệu dạy – học Toán 7 tập 2
Đề bài
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC \(\left( {E \in BC} \right)\) . Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:
a) BD là trung trực của AE.
b) AD < DC
c) Ba điểm E, D, F thẳng hàng.
Lời giải chi tiết
a) Xét ∆ABD (\(\widehat {BAD} = 90^\circ\)) và ∆BDE (\)\widehat {BED} = 90^\circ\))
Ta có: BD (cạnh chung)
\(\widehat {ABD} = \widehat {DBE}\) (BD là tia phân giác của\(\widehat {ABC}\))
Do đó: ∆ABD = ∆EBD (cạnh huyền – góc nhọn)
=> BA = BE và DA = DE
=> BD là đường trung trực của AE.
b) Ta có: DE < DC (đường vuông góc ngắn hơn đường xiên)
AD = DE (∆ABD = ∆EBD)
=> AD < DC.
c) Ta có BE = BA, AF = CE (gt) => BE + CE = BA + AF => BC = BF
Xét ∆BEF và ∆BAC có: BE = BA
\(\widehat {EBF}\) (chung)
BF = BC
Do đó ∆BEF = ∆BAC (c.g.c) \( \Rightarrow \widehat {BEF} = \widehat {BAC} = 90^\circ\)
Ta có \({\rm{EF}} \bot BC\) và\(DE \bot BC\) (gt) => EF, DE trùng nhau. Vậy E, D, F thẳng hàng.