- Trang chủ
- Lớp 11
- Toán học Lớp 11
- SGK Toán 11 Nâng cao Lớp 11
- ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
- CHƯƠNG II. TỔ HỢP VÀ XÁC SUẤT
-
ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
-
HÌNH HỌC- TOÁN 11 NÂNG CAO
Câu 19 trang 67 SGK Đại số và Giải tích 11 Nâng cao
Đề bài
Tính hệ số của \({x^7}\) trong khai triển \({\left( {1 + x} \right)^{11}}\)
Lời giải chi tiết
\({\left( {1 + x} \right)^{11}} = \sum\limits_{k = 0}^{11} {C_{11}^k{x^k}{{.1}^{11 - k}}} \)\( = \sum\limits_{k = 0}^{11} {C_{11}^k{x^k}} \)
Hệ số \({x^7}\) trong khai triển \({\left( {1 + x} \right)^{11}}\) ứng với k=7 \(\text{ là }\,C_{11}^7 = 330.\)