Dạng 3: Các bài toán về số tự nhiên và tổng, hiệu, tích các chữ số của nó Toán nâng cao lớp 4

Phân tích cấu tạo của một số tự nhiên:

$\overline {ab}  = a \times 10 + b$

$\overline {abc}  = a \times 100 + b \times 10 + c = \overline {ab}  \times 10 + c = a \times 100 + \overline {bc} $

$\overline {abcd}  = a \times 1000 + b \times 100 + c \times 10 + d = \overline {abc}  \times 10 + d = a \times 1000 + \overline {bcd} $

 

Một số cách phân tích số đặc biệt:

$\overline {a00}  = a \times 100$

\(\overline {aaa}  = a \times 111\)

$\overline {abab}  = \overline {ab}  \times 101$

$\overline {ababab}  = \overline {ab}  \times 10101$

Ví dụ 1: Tìm số tự nhiên có hai chữ số, biết rằng: Số đó gấp 5 lần tổng các chữ số của nó?

Giải

Gọi số cần tìm là $\overline {ab} $. Theo đề bài ta có:

$\overline {ab}  = 5 \times (a + b)$

10 x a + b = 5 x a + 5 x b

10 x a – 5 x a = 5 x b – b

(10 – 5) x a = (5 – 1) x b

5 x a = 4 x b

Từ đây ta suy ra b chia hết cho 5. Vậy b = 0 hoặc 5

- Nếu b = 0 thì a = 0 (loại)

- Nếu b = 5 thì 5 x a = 20, vậy a = 4

Vậy số cần tìm là 45.

 

Ví dụ 2: Tìm một số có hai chữ số, biết rằng số đó chia cho hiệu các chữ số của nó được thương bằng 28 và dư 1?

Giải:

Gọi số cần tìm là $\overline {ab} $ và hiệu các chữ số của nó là c.

Theo đề bài ta có:

$\overline {ab}  = c \times 28 + 1$

Vì $\overline {ab}  < 100$ nên c x 28 < 99

Vậy c = 1; 2 hoặc 3

- Nếu c = 1 thì $\overline {ab}  = 29$

Thử lại: 9 – 2 = 7; 29 : 7 = 4 (dư 1) (loại)

- Nếu c = 2 thì $\overline {ab}  = 57$

Thử lại: 7 – 5 = 2; 57 : 2 = 28 (dư 1)

- Nếu c = 3 thì $\overline {ab}  = 85$

Thử lại: 8 – 5 = 3; 85 : 3 = 28 (dư 1)

Vậy số cần tìm là 57 hoặc 85.

 

Ví dụ 3Tìm một số tự nhiên có ba chữ sốbiết rằng số đó gấp 5 lần tích các chữ số của nó.

Giải

Gọi số cần tìm là $\overline {abc} $.

Theo đề bài ta có:

$\overline {abc}  = 5 \times a \times b \times c$

Vì $5 \times a \times b \times c$ chia hết cho 5 nên $\overline {abc} $chia hết cho 5.

Vậy c = 0 hoặc 5. Nhưng c không thể bằng 0, vậy c = 5

Số cần tìm có dạng $\overline {ab5} $. Thay vào ta có:

$\overline {ab5}  = 5 \times a \times b \times 5$

$\overline {ab5}  = 25 \times a \times b$

Vì $25 \times a \times b$ chia hết cho 25 nên $\overline {ab5} $ chia hết cho 25. Suy ra b = 2 hoặc 7.

Vì 25 x a x b là số lẻ nên b = 7.

Thay vào ta có $\overline {a75}  = 25 \times a \times 7$

Tìm được a = 1

Vậy số cần tìm là 175.

 Bài tập áp dụng:

Bài 1 :

Tìm số tự nhiên có hai chữ số biết rằng số đó gấp 6 lần tổng các chữ số của nó.

Bài 2 :

Tìm số tự nhiên có hai chữ số biết rằng số đó gấp 7 lần tổng các chữ số của nó.

Bài 3 :

Tìm số tự nhiên có hai chữ số biết rằng số đó gấp 21 lần hiệu của chữ số hàng chục và hàng đơn vị.

Bài 4 :

Tìm số tự nhiên có hai chữ số, biết rằng số đó gấp 3 lần tích các chữ số của nó.