-
NA
-
Đề thi vào 10 môn Toán Hà Nội
-
1. Đề thi minh hoạ vào 10 môn Toán Hà Nội năm 2025
-
2. Đề thi vào 10 môn Toán Hà Nội năm 2023
-
3. Đề thi vào 10 môn Toán Hà Nội năm 2021
-
4. Đề thi vào 10 môn Toán Hà Nội năm 2020
-
5. Đề thi vào 10 môn Toán Hà Nội năm 2019
-
6. Đề thi vào 10 môn Toán Hà Nội năm 2018
-
7. Đề thi vào 10 môn Toán Hà Nội năm 2017
-
-
Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh
-
Đề thi vào 10 môn Toán Đồng Nai
-
Đề thi vào 10 môn Toán Đà Nẵng
-
Đề thi vào 10 môn Toán Bình Dương
-
Đề thi vào 10 môn Toán Bắc Ninh
-
Đề thi vào 10 môn Toán Hải Dương
-
Đề thi vào 10 môn Toán Nghệ An
-
Đề thi vào 10 môn Toán Hải Phòng
-
Đề thi vào 10 môn Toán Đắk Lắk
-
Đề thi vào 10 môn Toán Lâm Đồng
-
Đề thi vào 10 môn Toán Vĩnh Phúc
-
Đề thi vào 10 môn Toán Thanh Hóa
-
Đề thi vào 10 môn Toán Hưng Yên
-
Đề thi vào 10 môn Toán Bình Định
-
Đề thi vào 10 môn Toán Bắc Giang
-
Đề thi vào 10 môn Toán An Giang
-
Đề thi vào 10 môn Toán Khánh Hòa
-
Đề thi vào 10 môn Toán Cần Thơ
-
Đề thi vào 10 môn Toán Quảng Ninh
-
Đề thi vào 10 môn Toán Nam Định
-
Đề thi vào 10 môn Toán Thái Bình
-
Đề thi vào 10 môn Toán Quảng Ngãi
-
Đề thi vào 10 môn Toán Huế
-
Đề thi vào 10 môn Toán Thái Nguyên
-
Đề thi vào 10 môn Toán Phú Thọ
-
Đề thi vào 10 môn Toán Bình Thuận
-
Đề thi vào 10 môn Toán Tiền Giang
-
Đề thi vào 10 môn Toán Phú Yên
-
Đề thi vào 10 môn Toán Đồng Tháp
-
Đề thi vào 10 môn Toán Hà Tĩnh
-
Đề thi vào 10 môn Toán Kiên Giang
-
Đề thi vào 10 môn Toán Vĩnh Long
-
Đề thi vào 10 môn Toán Bình Phước
-
Đề thi vào 10 môn Toán Tây Ninh
-
Đề thi vào 10 môn Toán Bến Tre
-
Đề thi vào 10 môn Toán Cà Mau
-
Đề thi vào 10 môn Toán Quảng Bình
-
Đề thi vào 10 môn Toán Ninh Bình
-
Đề thi vào 10 môn Toán Hà Nam
-
Đề thi vào 10 môn Toán Quảng Trị
-
Đề thi vào 10 môn Toán Bạc Liêu
-
Đề thi vào 10 môn Toán Sóc Trăng
-
Đề thi vào 10 môn Toán Tuyên Quang
-
Đề thi vào 10 môn Toán Ninh Thuận
-
Đề thi vào 10 môn Toán Hòa Bình
-
Đề thi vào 10 môn Toán Đắk Nông
-
Đề thi vào 10 môn Toán Sơn La
-
Đề thi vào 10 môn Toán Trà Vinh
-
Đề thi vào 10 môn Toán Lào Cai
-
Đề thi vào 10 môn Toán Hậu Giang
-
Đề thi vào 10 môn Toán Yên Bái
-
Đề thi vào 10 môn Toán Lạng Sơn
-
Đề thi vào 10 môn Toán Long An
-
Đề thi vào 10 môn Toán Quảng Nam
-
Tổng hợp 50 đề thi vào 10 môn Toán
-
1. Đề số 1 - Đề thi vào lớp 10 môn Toán
-
2. Đề số 2 - Đề thi vào lớp 10 môn Toán
-
3. Đề số 3 - Đề thi vào lớp 10 môn Toán
-
4. Đề số 4 - Đề thi vào lớp 10 môn Toán
-
5. Đề số 5 - Đề thi vào lớp 10 môn Toán
-
6. Đề số 6 - Đề thi vào lớp 10 môn Toán
-
7. Đề số 7 - Đề thi vào lớp 10 môn Toán
-
8. Đề số 8 - Đề thi vào lớp 10 môn Toán
-
9. Đề số 9 - Đề thi vào lớp 10 môn Toán
-
10. Đề số 10 - Đề thi vào lớp 10 môn Toán
-
11. Đề số 11 - Đề thi vào lớp 10 môn Toán
-
12. Đề số 12 - Đề thi vào lớp 10 môn Toán
-
13. Đề số 13 - Đề thi vào lớp 10 môn Toán
-
14. Đề số 14 - Đề thi vào lớp 10 môn Toán
-
15. Đề số 15 - Đề thi vào lớp 10 môn Toán
-
16. Đề số 16 - Đề thi vào lớp 10 môn Toán
-
17. Đề số 17 - Đề thi vào lớp 10 môn Toán
-
18. Đề số 18 - Đề thi vào lớp 10 môn Toán
-
19. Đề số 19 - Đề thi vào lớp 10 môn Toán
-
20. Đề số 20 - Đề thi vào lớp 10 môn Toán
-
21. Đề số 21 - Đề thi vào lớp 10 môn Toán
-
22. Đề số 22 - Đề thi vào lớp 10 môn Toán
-
23. Đề số 23 - Đề thi vào lớp 10 môn Toán
-
24. Đề số 24 - Đề thi vào lớp 10 môn Toán
-
25. Đề số 25 - Đề thi vào lớp 10 môn Toán
-
26. Đề số 26 - Đề thi vào lớp 10 môn Toán
-
27. Đề số 27 - Đề thi vào lớp 10 môn Toán
-
28. Đề số 28 - Đề thi vào lớp 10 môn Toán
-
29. Đề số 29 - Đề thi vào lớp 10 môn Toán
-
30. Đề số 30 - Đề thi vào lớp 10 môn Toán
-
31. Đề số 31 - Đề thi vào lớp 10 môn Toán
-
32. Đề số 32 - Đề thi vào lớp 10 môn Toán
-
33. Đề số 33 - Đề thi vào lớp 10 môn Toán
-
34. Đề số 34 - Đề thi vào lớp 10 môn Toán
-
35. Đề số 35 - Đề thi vào lớp 10 môn Toán
-
36. Đề số 36 - Đề thi vào lớp 10 môn Toán
-
37. Đề số 37 - Đề thi vào lớp 10 môn Toán
-
38. Đề số 38 - Đề thi vào lớp 10 môn Toán
-
39. Đề số 39 - Đề thi vào lớp 10 môn Toán
-
40. Đề số 40 - Đề thi vào lớp 10 môn Toán
-
41. Đề số 41 - Đề thi vào lớp 10 môn Toán
-
42. Đề số 42 - Đề thi vào lớp 10 môn Toán
-
43. Đề số 43 - Đề thi vào lớp 10 môn Toán
-
Đề số 16 - Đề thi vào lớp 10 môn Toán
Đề bài
Bài 1. (1,5 điểm)
a) Trục căn thức ở mẫu của biểu thức \(A = \dfrac{1}{{2 - \sqrt 3 }}\)
b) Cho \(a \ge 0,a \ne 4.\) Chứng minh \(\dfrac{{\sqrt a }}{{\sqrt a + 2}} + \dfrac{{2\left( {\sqrt a - 2} \right)}}{{a - 4}} = 1\) .
Bài 2. (2,0 điểm)
a) Giải hệ phương trình: \(\left\{ \begin{array}{l}x + 2y = 14\\2x + 3y = 24\end{array} \right.\)
b) Giải phương trình \(4x + \dfrac{3}{{x - 1}} = 11\)
Bài 3. (1,5 điểm)
Vẽ đồ thị của các hàm số \(y = - \dfrac{1}{2}{x^2}\) và \(y = x - 4\) trên cùng một mặt phẳng tọa độ. Gọi A và B là các giao điểm của đồ thị hai hàm số trên. Tính bán kính của đường tròn ngoại tiếp tam giác OAB, với O là gốc tọa độ (đơn vị đo trên các tọa độ là centimet).
Bài 4 (1 điểm):
Cho phương trình \({x^2} + 2\left( {m - 1} \right)x + 4m - 11 = 0,\) với \(m\) là tham số. Tìm tất cả các giá trị của \(m\) để phương trình có hai nghiệm phân biệt \({x_1},\;{x_2}\) thỏa mãn hệ thức \(2{\left( {{x_1} - 1} \right)^2} + \left( {6 - {x_2}} \right)\left( {{x_1}{x_2} + 11} \right) = 72.\)
Bài 5 (1 điểm):
Cạnh huyền của một tam giác vuông bằng 17 cm. Hai cạnh góc vuông có độ dài hơn kém nhau 7 cm. Tính diện tích của tam giác vuông đó.
Bài 6 (3 điểm):
Cho tam giác nhọn ABC nội tiếp trong đường tròn tâm O có AB < AC. Trên cung nhỏ AC lấy điểm M khác A thỏa mãn MA < MC. Vẽ đường kính MN của đường tròn (O) và gọi H, K lần lượt là hình chiếu vuông góc của A trên MB, MN. Chứng minh rằng:
a) Bốn điểm A, H, K, M cùng nằm trên một đường tròn.
b) AH.AK = HB.MK.
c) Khi điểm M di động trên cung nhỏ AC thì đường thẳng HK luôn qua một điểm cố định.
Lời giải chi tiết
Bài 1.
a) Trục căn thức ở mẫu của biểu thức \(A = \dfrac{1}{{2 - \sqrt 3 }}\)
\(A = \dfrac{1}{{2 - \sqrt 3 }} \)
\(\;\;\;= \dfrac{{2 + \sqrt 3 }}{{\left( {2 - \sqrt 3 } \right)\left( {2 + \sqrt 3 } \right)}}\)
\(\;\;\;= \dfrac{{2 + \sqrt 3 }}{{{2^2} - {{\left( {\sqrt 3 } \right)}^2}}} \)
\(\;\;\;= 2 + \sqrt 3 \)
b) Cho \(a \ge 0,a \ne 4.\) Chứng minh \(\dfrac{{\sqrt a }}{{\sqrt a + 2}} + \dfrac{{2\left( {\sqrt a - 2} \right)}}{{a - 4}} = 1\) .
Với: \(a \ge 0,a \ne 4.\)
\(\begin{array}{l}VT = \dfrac{{\sqrt a }}{{\sqrt a + 2}} + \dfrac{{2\left( {\sqrt a - 2} \right)}}{{a - 4}}\\ = \dfrac{{\sqrt a }}{{\sqrt a + 2}} + \dfrac{{2\left( {\sqrt a - 2} \right)}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a + 2} \right)}}\\ = \dfrac{{\sqrt a }}{{\sqrt a + 2}} + \dfrac{2}{{\sqrt a + 2}}\\ = 1 = VP\end{array}\)
Vậy đẳng thức đã được chứng minh.
Bài 2.
a) Giải hệ phương trình: \(\left\{ \begin{array}{l}x + 2y = 14\\2x + 3y = 24\end{array} \right.\)
\(\left\{ \begin{array}{l}x + 2y = 14\\2x + 3y = 24\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 14 - 2y\\2x + 3y = 24\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x = 14 - 2y\\2\left( {14 - 2y} \right) + 3y = 24\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 14 - 2y\\28 - y = 24\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x = 14 - 2y\\y = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y = 4\end{array} \right.\)
Vậy nghiệm của hệ phương trình là \(\left( {x;y} \right) = \left( {6;4} \right)\).
b) Giải phương trình \(4x + \dfrac{3}{{x - 1}} = 11\) (1)
Điều kiện: \(x \ne 1\)
\(\begin{array}{l}4x + \dfrac{3}{{x - 1}} = 11\\ \Leftrightarrow \dfrac{{4x\left( {x - 1} \right)}}{{x - 1}} + \dfrac{3}{{x - 1}} = \dfrac{{11\left( {x - 1} \right)}}{{x - 1}}\\ \Leftrightarrow 4{x^2} - 4x + 3 = 11x - 11\\ \Leftrightarrow 4{x^2} - 15x + 14 = 0\,\,\left( 2 \right)\end{array}\)
Ta có: \(\Delta = {\left( { - 15} \right)^2} - 4.4.14 = 1 > 0\)
Vậy phương trình (2) có 2 nghiệm phân biệt là: \(\left[ \begin{array}{l}{x_1} = \dfrac{{15 - 1}}{8} = \dfrac{7}{4}\left( {tm} \right)\\{x_2} = \dfrac{{15 + 1}}{8} = 2\left( {tm} \right)\end{array} \right.\)
Vậy phương trình đã cho có tập nghiệm là: \(S = \left\{ {2;\dfrac{7}{4}} \right\}\)
Bài 3.
+) Vẽ đồ thị hàm số: \(y = - \dfrac{1}{2}{x^2}\)
x | \( - 4\) | \( - 2\) | 0 | 2 | 4 |
y | \( - 8\) | \( - 2\) | 0 | \( - 2\) | \( - 8\) |
Khi đó đồ thị hàm số \(y = - \dfrac{1}{2}{x^2}\) có hình dạng là 1 Parabol và đi qua các điểm \(\left( { - 4; - 8} \right);\left( { - 2; - 2} \right);\left( {0;0} \right);\left( {2; - 2} \right);\left( {4; - 8} \right)\)
+) Vẽ đồ thị hàm số: \(y = x - 4\)
x | 0 | 4 |
y | \( - 4\) | 0 |
Khi đó đồ thị hàm số \(y = x - 4\) là một đường thẳng và đi qua các điểm \(\left( {0; - 4} \right);\left( {4;0} \right)\)
+) Phương trình hoành độ giao điểm của hàm số \(y = - \dfrac{1}{2}{x^2}\) và \(y = x - 4\) là:
\( - \dfrac{1}{2}{x^2} = x - 4 \\\Leftrightarrow {x^2} + 2x - 8 = 0 \\\Leftrightarrow \left( {x - 2} \right)\left( {x + 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = - 4\end{array} \right.\)
\(\begin{array}{l}x = 2 \Rightarrow y = - 2 \Rightarrow A\left( {2; - 2} \right)\\x = - 4 \Rightarrow y = - 8 \Rightarrow B\left( { - 4; - 8} \right)\end{array}\)
Xét tam giác OAE ta có: \(OD = DE = \dfrac{1}{2}OE = 2cm;AD = 2cm\) nên tam giác OAE vuông tại A.
Khi đó ta có: \(OA \bot AB\) nên tam giác OAB vuông tại A.
Ta có tâm đường tròn ngoại tiếp tam giác OAB là trung điểm của cạnh huyền OB và bán kính của đường tròn \( = \dfrac{1}{2}OB\)
Ta có: Áp dụng định lý pitago trong tam giác vuông OBC có: \(O{B^2} = O{C^2} + B{C^2} = {4^2} + {8^2} = 80 \) \(\Rightarrow OB = 4\sqrt 5 \)
Vậy bán kính đường tròn ngoại tiếp tam giác OAB là \(\dfrac{1}{2}OB = 2\sqrt 5 \)
Bài 4:
Cho phương trình \({x^2} + 2\left( {m - 1} \right)x + 4m - 11 = 0,\) với \(m\) là tham số. Tìm tất cả các giá trị của \(m\) để phương trình có hai nghiệm phân biệt \({x_1},\;{x_2}\) thỏa mãn hệ thức \(2{\left( {{x_1} - 1} \right)^2} + \left( {6 - {x_2}} \right)\left( {{x_1}{x_2} + 11} \right) = 72.\)
Phương trình có hai nghiệm phân biệt \({x_1},\;\;{x_2} \Leftrightarrow \Delta ' > 0\)
\(\begin{array}{l} \Leftrightarrow {\left( {m - 1} \right)^2} - 4m + 11 > 0\\ \Leftrightarrow {m^2} - 2m + 1 - 4m + 11 > 0\\ \Leftrightarrow {m^2} - 6m + 12 > 0\\ \Leftrightarrow {m^2} - 6m + 9 + 3 > 0\\ \Leftrightarrow {\left( {m - 3} \right)^2} + 3 > 0.\end{array}\)
Vì \({\left( {m - 3} \right)^2} \ge 0\;\;\forall m \Rightarrow {\left( {m - 3} \right)^2} + 3 > 0\;\forall \;m \Rightarrow \Delta ' > 0\;\forall m.\)
Hay phương trình đã cho luôn có hai nghiệm phân biệt \({x_1},\;\;{x_2}\) với mọi \(m.\)
Áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = - 2\left( {m - 1} \right)\\{x_1}{x_2} = 4m - 11\end{array} \right.\)
Vì \({x_1};\,\,{x_2}\) là nghiệm của phương trình \({x^2} + 2\left( {m - 1} \right)x + 4m - 11 = 0\) nên ta có:
\(\left\{ \begin{array}{l}2x_1^2 + 4\left( {m - 1} \right){x_1} + 8m - 22 = 0\\x_2^2 + 2\left( {m - 1} \right){x_2} + 4m - 11 = 0\end{array} \right. \)
\(\Leftrightarrow \left\{ \begin{array}{l}2x_1^2 = - 4\left( {m - 1} \right){x_1} - 8m + 22\\x_2^2 = - 2\left( {m - 1} \right){x_2} - 4m + 11\end{array} \right.\)
\(\begin{array}{l}2{\left( {{x_1} - 1} \right)^2} + \left( {6 - {x_2}} \right)\left( {{x_1}{x_2} + 11} \right) = 72\\ \Leftrightarrow 2x_1^2 - 4{x_1} + 2 + 6{x_1}{x_2} + 66 - {x_1}x_2^2 - 11{x_2} = 72\\ \Leftrightarrow - 4\left( {m - 1} \right){x_1} - 8m + 22 - 4{x_1} + 6{x_1}{x_2} - {x_1}\left( { - 2\left( {m - 1} \right){x_2} - 4m + 11} \right) - 11{x_2} = 4\\ \Leftrightarrow - 4m{x_1} + 4{x_1} - 8m + 22 - 4{x_1} + 6{x_1}{x_2} + 2\left( {m - 1} \right){x_1}{x_2} + 4m{x_1} - 11{x_1} - 11{x_2} = 4\\ \Leftrightarrow \left( {2m + 4} \right){x_1}{x_2} - 11\left( {{x_1} + {x_2}} \right) = 8m - 18\\ \Leftrightarrow \left( {2m + 4} \right)\left( {4m - 11} \right) + 22\left( {m - 1} \right) = 8m - 18\\ \Leftrightarrow 8{m^2} - 22m + 16m - 44 + 22m - 22 = 8m - 18\\ \Leftrightarrow 8{m^2} + 8m - 48 = 0\\ \Leftrightarrow {m^2} + m - 6 = 0\\ \Leftrightarrow {m^2} - 2m + 3m - 6 = 0\\ \Leftrightarrow m\left( {m - 2} \right) + 3\left( {m - 2} \right) = 0\\ \Leftrightarrow \left( {m + 3} \right)\left( {m - 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}m = - 3\\m = 2\end{array} \right.\end{array}\)
Vậy \(m = - 3\) hoặc \(m = 2\) thỏa mãn yêu cầu bài toán.
Bài 5:
Cạnh huyền của một tam giác vuông bằng 17 cm. Hai cạnh góc vuông có độ dài hơn kém nhau 7 cm. Tính diện tích của tam giác vuông đó.
Gọi độ dài một cạnh góc vuông lớn hơn của tam giác vuông là \(x\;\left( {cm} \right),\;\left( {7 < x < 17} \right).\)
Khi đó độ cạnh góc vuông còn lại của tam giác vuông đó là: \(x - 7\;\left( {cm} \right)\)
Áp dụng định lý Pi-ta-go cho tam giác vuông này ta có phương trình:
\(\begin{array}{l}\;\;\;\;{x^2} + {\left( {x - 7} \right)^2} = {17^2}\\ \Leftrightarrow 2{x^2} - 14x + 49 = 289\\ \Leftrightarrow 2{x^2} - 14x - 240 = 0\\ \Leftrightarrow 2\left( {x - 15} \right)\left( {x + 8} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 15 = 0\\x + 8 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 15\;\;\left( {tm} \right)\\x = - 8\;\;\;\left( {ktm} \right)\end{array} \right..\end{array}\)
\( \Rightarrow \) độ dài cạnh còn lại của tam giác vuông là: \(15 - 7 = \;8cm.\)
Vậy diện tích của tam giác vuông đó là: \(S = \dfrac{1}{2}.8.15 = 60\;c{m^2}.\)
Bài 6:
Cho tam giác nhọn ABC nội tiếp trong đường tròn tâm O có AB < AC. Trên cung nhỏ AC lấy điểm M khác A thỏa mãn MA < MC. Vẽ đường kính MN của đường tròn (O) và gọi H, K lần lượt là hình chiếu vuông góc của A trên MB, MN. Chứng minh rằng:
a) Bốn điểm A, H, K, M cùng nằm trên một đường tròn.
Xét tứ giác \(AHKM\) ta có: \(\widehat {AHM} = \widehat {AKM} = {90^0}\;\;\left( {gt} \right)\)
Mà hai góc này là góc kề cạnh \(HK\) và cùng nhìn đoạn \(AM.\)
\( \Rightarrow AHKM\) là tứ giác nội tiếp (dấu hiệu nhận biết).
Hay bốn điểm \(A,H,\;K,\;M\) cùng nằm trên một đường tròn (đpcm).
b) AH.AK = HB.MK.
Ta có :
Mà
Mà \(\widehat {ABH} + \widehat {BAH} = {90^0}\) (tam giác ABH vuông tại H).
\( \Rightarrow \widehat {AMK} = \widehat {BAH}\).
Xét tam giác AMK và tam giác BAH có :
\(\begin{array}{l}\widehat {AKM} = \widehat {BHA} = {90^0}\\\widehat {AMK} = \widehat {BAH}\,\,\left( {cmt} \right)\\ \Rightarrow \Delta AMK \sim \Delta BAH\,\,\left( {g.g} \right)\\ \Rightarrow \dfrac{{AK}}{{HB}} = \dfrac{{MK}}{{AH}}\\ \Rightarrow AH.AK = HB.MK\end{array}\)
c) Khi điểm M di động trên cung nhỏ AC thì đường thẳng HK luôn qua một điểm cố định.
Kéo dài HK cắt AB tại E.
Ta có \(\widehat {MAK} = \widehat {MHK}\) (hai góc nội tiếp cùng chắn cung MK).
Lại có \(\widehat {MHK} = \widehat {EHB}\) (đối đỉnh)
\( \Rightarrow \widehat {MAK} = \widehat {EHB}\)
Do \(\Delta AMK \sim \Delta BAH\,\,\left( {cmt} \right) \)
\(\Rightarrow \widehat {MAK} = \widehat {ABH} = \widehat {EBH}\)
\( \Rightarrow \widehat {EHB} = \widehat {EBH} \) \(\Rightarrow \Delta EHB\) cân tại E.
\( \Rightarrow EH = EB\,\,\left( 1 \right)\).
Ta có \(\widehat {EBH} + \widehat {EAH} = {90^0}\) (Tam giác ABH vuông tại H)
\(\widehat {EHB} + \widehat {EHA} = \widehat {AHB} = {90^0}\)
\( \Rightarrow \widehat {EAH} = \widehat {EHA} \Rightarrow \Delta EAH\) cân tại E \( \Rightarrow EA = EH\,\,\left( 2 \right)\).
Từ (1) và (2) \( \Rightarrow EA = EB \Rightarrow E\) là trung điểm của AB. Do A, B cố định \( \Rightarrow E\) cố định.
Vậy khi M di chuyển trên cung nhỏ AC thì HK luôn đi qua trung điểm của AB (đpcm).