-
NA
-
Đề thi vào 10 môn Toán Hà Nội
-
1. Đề thi minh hoạ vào 10 môn Toán Hà Nội năm 2025
-
2. Đề thi vào 10 môn Toán Hà Nội năm 2023
-
3. Đề thi vào 10 môn Toán Hà Nội năm 2021
-
4. Đề thi vào 10 môn Toán Hà Nội năm 2020
-
5. Đề thi vào 10 môn Toán Hà Nội năm 2019
-
6. Đề thi vào 10 môn Toán Hà Nội năm 2018
-
7. Đề thi vào 10 môn Toán Hà Nội năm 2017
-
-
Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh
-
Đề thi vào 10 môn Toán Đồng Nai
-
Đề thi vào 10 môn Toán Đà Nẵng
-
Đề thi vào 10 môn Toán Bình Dương
-
Đề thi vào 10 môn Toán Bắc Ninh
-
Đề thi vào 10 môn Toán Hải Dương
-
Đề thi vào 10 môn Toán Nghệ An
-
Đề thi vào 10 môn Toán Hải Phòng
-
Đề thi vào 10 môn Toán Đắk Lắk
-
Đề thi vào 10 môn Toán Lâm Đồng
-
Đề thi vào 10 môn Toán Vĩnh Phúc
-
Đề thi vào 10 môn Toán Thanh Hóa
-
Đề thi vào 10 môn Toán Hưng Yên
-
Đề thi vào 10 môn Toán Bình Định
-
Đề thi vào 10 môn Toán Bắc Giang
-
Đề thi vào 10 môn Toán An Giang
-
Đề thi vào 10 môn Toán Khánh Hòa
-
Đề thi vào 10 môn Toán Cần Thơ
-
Đề thi vào 10 môn Toán Quảng Ninh
-
Đề thi vào 10 môn Toán Nam Định
-
Đề thi vào 10 môn Toán Thái Bình
-
Đề thi vào 10 môn Toán Quảng Ngãi
-
Đề thi vào 10 môn Toán Huế
-
Đề thi vào 10 môn Toán Thái Nguyên
-
Đề thi vào 10 môn Toán Phú Thọ
-
Đề thi vào 10 môn Toán Bình Thuận
-
Đề thi vào 10 môn Toán Tiền Giang
-
Đề thi vào 10 môn Toán Phú Yên
-
Đề thi vào 10 môn Toán Đồng Tháp
-
Đề thi vào 10 môn Toán Hà Tĩnh
-
Đề thi vào 10 môn Toán Kiên Giang
-
Đề thi vào 10 môn Toán Vĩnh Long
-
Đề thi vào 10 môn Toán Bình Phước
-
Đề thi vào 10 môn Toán Tây Ninh
-
Đề thi vào 10 môn Toán Bến Tre
-
Đề thi vào 10 môn Toán Cà Mau
-
Đề thi vào 10 môn Toán Quảng Bình
-
Đề thi vào 10 môn Toán Ninh Bình
-
Đề thi vào 10 môn Toán Hà Nam
-
Đề thi vào 10 môn Toán Quảng Trị
-
Đề thi vào 10 môn Toán Bạc Liêu
-
Đề thi vào 10 môn Toán Sóc Trăng
-
Đề thi vào 10 môn Toán Tuyên Quang
-
Đề thi vào 10 môn Toán Ninh Thuận
-
Đề thi vào 10 môn Toán Hòa Bình
-
Đề thi vào 10 môn Toán Đắk Nông
-
Đề thi vào 10 môn Toán Sơn La
-
Đề thi vào 10 môn Toán Trà Vinh
-
Đề thi vào 10 môn Toán Lào Cai
-
Đề thi vào 10 môn Toán Hậu Giang
-
Đề thi vào 10 môn Toán Yên Bái
-
Đề thi vào 10 môn Toán Lạng Sơn
-
Đề thi vào 10 môn Toán Long An
-
Đề thi vào 10 môn Toán Quảng Nam
-
Tổng hợp 50 đề thi vào 10 môn Toán
-
1. Đề số 1 - Đề thi vào lớp 10 môn Toán
-
2. Đề số 2 - Đề thi vào lớp 10 môn Toán
-
3. Đề số 3 - Đề thi vào lớp 10 môn Toán
-
4. Đề số 4 - Đề thi vào lớp 10 môn Toán
-
5. Đề số 5 - Đề thi vào lớp 10 môn Toán
-
6. Đề số 6 - Đề thi vào lớp 10 môn Toán
-
7. Đề số 7 - Đề thi vào lớp 10 môn Toán
-
8. Đề số 8 - Đề thi vào lớp 10 môn Toán
-
9. Đề số 9 - Đề thi vào lớp 10 môn Toán
-
10. Đề số 10 - Đề thi vào lớp 10 môn Toán
-
11. Đề số 11 - Đề thi vào lớp 10 môn Toán
-
12. Đề số 12 - Đề thi vào lớp 10 môn Toán
-
13. Đề số 13 - Đề thi vào lớp 10 môn Toán
-
14. Đề số 14 - Đề thi vào lớp 10 môn Toán
-
15. Đề số 15 - Đề thi vào lớp 10 môn Toán
-
16. Đề số 16 - Đề thi vào lớp 10 môn Toán
-
17. Đề số 17 - Đề thi vào lớp 10 môn Toán
-
18. Đề số 18 - Đề thi vào lớp 10 môn Toán
-
19. Đề số 19 - Đề thi vào lớp 10 môn Toán
-
20. Đề số 20 - Đề thi vào lớp 10 môn Toán
-
21. Đề số 21 - Đề thi vào lớp 10 môn Toán
-
22. Đề số 22 - Đề thi vào lớp 10 môn Toán
-
23. Đề số 23 - Đề thi vào lớp 10 môn Toán
-
24. Đề số 24 - Đề thi vào lớp 10 môn Toán
-
25. Đề số 25 - Đề thi vào lớp 10 môn Toán
-
26. Đề số 26 - Đề thi vào lớp 10 môn Toán
-
27. Đề số 27 - Đề thi vào lớp 10 môn Toán
-
28. Đề số 28 - Đề thi vào lớp 10 môn Toán
-
29. Đề số 29 - Đề thi vào lớp 10 môn Toán
-
30. Đề số 30 - Đề thi vào lớp 10 môn Toán
-
31. Đề số 31 - Đề thi vào lớp 10 môn Toán
-
32. Đề số 32 - Đề thi vào lớp 10 môn Toán
-
33. Đề số 33 - Đề thi vào lớp 10 môn Toán
-
34. Đề số 34 - Đề thi vào lớp 10 môn Toán
-
35. Đề số 35 - Đề thi vào lớp 10 môn Toán
-
36. Đề số 36 - Đề thi vào lớp 10 môn Toán
-
37. Đề số 37 - Đề thi vào lớp 10 môn Toán
-
38. Đề số 38 - Đề thi vào lớp 10 môn Toán
-
39. Đề số 39 - Đề thi vào lớp 10 môn Toán
-
40. Đề số 40 - Đề thi vào lớp 10 môn Toán
-
41. Đề số 41 - Đề thi vào lớp 10 môn Toán
-
42. Đề số 42 - Đề thi vào lớp 10 môn Toán
-
43. Đề số 43 - Đề thi vào lớp 10 môn Toán
-
Đề số 34 - Đề thi vào lớp 10 môn Toán
Đề bài
Câu 1 (2 điểm):
a) Bằng các phép biến đổi đại số hãy rút gọn biểu thức: \(A = 2\sqrt 5 + 3\sqrt {45} .\)
b) Giải phương trình \({x^2} - 6x + 5 = 0.\)
Câu 2 (1,5 điểm):
Cho hai hàm số \(y = {x^2}\) và \(y = - x + 2.\)
a) Vẽ đồ thị của hai hàm số này trên cùng một mặt phẳng tọa độ Oxy.
b) Tìm tọa độ giao điểm của hai đồ thị đó bằng phương pháp đại số.
Câu 3 (1,5 điểm):
Cho phương trình \({x^2} - 2x + m + 3 = 0\;\;\;\left( 1 \right)\) (với \(x\) là ẩn, \(m\) là tham số).
a) Tìm tất cả các giá trị của \(m\) để phương trình \(\left( 1 \right)\) có nghiệm.
b) Gọi \({x_1},\;{x_2}\) là nghiệm của phương trình \(\left( 1 \right).\) Tìm tất cả các giá trị của \(m\) để \(x_1^2 + x_2^2 - 3{x_1}{x_2} - 4 = 0.\)
Câu 4 (1,5 điểm):
Một mảnh đất hình chữ nhật có diện tích \(360{m^2}.\) Nếu tăng chiều rộng \(2m\) và giảm chiều dài \(6m\) thì diện tích mảnh đất không đổi. Tính chu vi của mảnh đất lúc đầu.
Câu 5 (3,5 điểm):
Cho đường tròn \(\left( O \right)\) đường kính \(AB = 6cm.\) Gọi \(H\) là điểm thuộc đoạn thẳng \(AB\) sao cho \(AH = 1cm.\) Qua \(H\) vẽ đường thẳng vuông góc với \(AB,\) đường thẳng này cắt đường tròn \(\left( O \right)\) tại C và D. Hai đường thẳng BC và AD cắt nhau tại M. Gọi N là hình chiếu của M trên đường thẳng AB.
a) Chứng minh tứ giác MNAC nội tiếp.
b) Tính độ dài CH và \(\tan \angle ABC\)
c) Chứng minh NC là tiếp tuyến của đường tròn \(\left( O \right)\).
d) Tiếp tuyến tại A của đường tròn \(\left( O \right)\) cắt NC tại E. Chứng minh đường thẳng EB đi qua trung điểm của đoan thẳng CH.
Lời giải chi tiết
Câu 1:
a) Bằng các phép biến đổi đại số hãy rút gọn biểu thức: \(A = 2\sqrt 5 + 3\sqrt {45} .\)
\(A = 2\sqrt 5 + 3\sqrt {45} = 2\sqrt 5 + 3.\sqrt {{3^2}.5}\)\(\, = 2\sqrt 5 + 9\sqrt 5 = 11\sqrt 5 .\)
Vậy \(A = 11\sqrt 5 .\)
b) Giải phương trình \({x^2} - 6x + 5 = 0.\)
\(\begin{array}{l}\;\;\;{x^2} - 6x + 5 = 0 \\\Leftrightarrow {x^2} - 5x - x + 5 = 0\\ \Leftrightarrow x\left( {x - 5} \right) - \left( {x - 5} \right) = 0\\ \Leftrightarrow \left( {x - 5} \right)\left( {x - 1} \right) = 0 \\\Leftrightarrow \left[ \begin{array}{l}x - 5 = 0\\x - 1 = 0\end{array} \right. \\\Leftrightarrow \left[ \begin{array}{l}x = 5\\x = 1\end{array} \right..\end{array}\)
Vậy tập nghiệm của phương trình là: \(S = \left\{ {1;\;5} \right\}.\)
Câu 2:
Cho hai hàm số \(y = {x^2}\) và \(y = - x + 2.\)
a) Vẽ đồ thị của hai hàm số này trên cùng một mặt phẳng tọa độ Oxy.
+) Vẽ đồ thị hàm số: \(\left( d \right):\;\;y = - x + 2.\)
\(x\) | \(0\) | \(2\) |
\(y = - x + 2\) | \(2\) | \(0\) |
Đồ thị hàm số \(y = - x + 2\) là đường thẳng đi qua các điểm \(\left( {0;\;2} \right),\;\left( {2;\;0} \right).\)
+) Vẽ đồ thị hàm số: \(\left( P \right):\;\;y = {x^2}.\)
\(x\) | \( - 2\) | \( - 1\) | \(0\) | \(1\) | \(2\) |
\(y = {x^2}\) | \(4\) | \(1\) | \(0\) | \(1\) | \(4\) |
Đồ thị hàm số \(\left( P \right):\;\;y = {x^2}\) là đường cong đi qua các điểm \(\left( { - 2;\;4} \right),\;\left( { - 1;\;1} \right),\;\left( {0;\;0} \right),\;\left( {1;\;1} \right),\;\left( {2;\;4} \right).\)
Đồ thị hàm số:
b) Tìm tọa độ giao điểm của hai đồ thị đó bằng phương pháp đại số.
Hoành độ giao điểm của hai đồ thị là nghiệm của phương trình hoành độ giao điểm.
Ta có phương trình hoành độ giao điểm của hai đồ thị là:
\(\begin{array}{l}\;\;\; - x + 2 = {x^2} \Leftrightarrow {x^2} + x - 2 = 0 \\\Leftrightarrow {x^2} + 2x - x - 2 = 0\\ \Leftrightarrow x\left( {x + 2} \right) - \left( {x + 2} \right) = 0\\ \Leftrightarrow \left( {x + 2} \right)\left( {x - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x + 2 = 0\\x - 1 = 0\end{array} \right. \\\Leftrightarrow \left[ \begin{array}{l}x = - 2 \Rightarrow y = 4\\x = 1 \Rightarrow y = 1\end{array} \right..\end{array}\)
Vậy hai đồ thị cắt nhau tại hai điểm phân biệt \(A\left( { - 2;\;4} \right)\) và \(B\left( {1;\;1} \right).\)
Câu 3:
Cho phương trình \({x^2} - 2x + m + 3 = 0\;\;\;\left( 1 \right)\) (với \(x\) là ẩn, \(m\) là tham số).
a) Tìm tất cả các giá trị của \(m\) để phương trình \(\left( 1 \right)\) có nghiệm.
Phương trình có nghiệm \( \Leftrightarrow \Delta ' \ge 0 \Leftrightarrow 1 - m - 3 \ge 0\) \( \Leftrightarrow m \le - 2.\)
Vậy \(m \le - 2\) thì phương trình đã cho có nghiệm.
b) Gọi \({x_1},\;{x_2}\) là nghiệm của phương trình \(\left( 1 \right).\) Tìm tất cả các giá trị của \(m\) để \(x_1^2 + x_2^2 - 3{x_1}{x_2} - 4 = 0.\)
Với \(m \le - 2\) thì phương trình có hai nghiệm \({x_1},\;{x_2}.\)
Áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}{x_2} = m + 3\end{array} \right..\)
Theo đề bài ta có: \(x_1^2 + x_2^2 - 3{x_1}{x_2} - 4 = 0\)
\(\begin{array}{l} \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} - 3{x_1}{x_2} - 4 = 0 \\\Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 5{x_1}{x_2} - 4 = 0\\ \Leftrightarrow 4 - 5\left( {m + 3} \right) - 4 = 0\\ \Leftrightarrow 4 - 5m - 15 - 4 = 0 \\ \Leftrightarrow 5m = - 15\\ \Leftrightarrow m = - 3\;\;\;\left( {tm} \right).\end{array}\)
Vậy \(m = - 3\) thỏa mãn điều kiện bài toán.
Câu 4:
Gọi chiều rộng của mảnh đất đã cho là \(x\;\left( m \right),\;\;\left( {0 < x < 360} \right).\)
Gọi chiều dài của mảnh đất đã cho là: \(y\;\left( m \right),\;\;\left( {6 < y < 360,\;y > x} \right).\)
Khi đó ta có diện tích của mảnh đất là: \(xy = 360\;\;\;\left( 1 \right).\)
Tăng chiều rộng thêm \(2m\) thì chiều rộng mới là: \(x + 2\;\;\left( m \right).\)
Giảm chiều dài đi \(6m\) thì chiều dài mới là: \(y - 6\;\;\left( m \right).\)
Khi đó diện tích mảnh đất không đổi nên ta có phương trình: \(\left( {x + 2} \right)\left( {y - 6} \right) = xy \)
\(\Leftrightarrow 2y - 6x - 12 = 0\;\;\;\;\left( 2 \right).\)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{ \begin{array}{l}xy = 360\\2y - 6x - 12 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}xy = 360\\y = 3x + 6\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x\left( {3x + 6} \right) = 360\\y = 3x + 6\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}3{x^2} + 6x - 360 = 0\\y = 3x + 6\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x = 10\;\;\;\;\left( {tm} \right)\\x = - 12\;\;\left( {ktm} \right)\end{array} \right.\\y = 3.10 + 6\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 10\\y = 36\;\;\left( {tm} \right)\end{array} \right..\)
Vậy chu vi của mảnh vườn lúc đầu là: \(\left( {10 + 36} \right).2 = 92m.\)
Câu 5:
Cho đường tròn \(\left( O \right)\) đường kính \(AB = 6cm.\) Gọi \(H\) là điểm thuộc đoạn thẳng \(AB\) sao cho \(AH = 1cm.\) Qua \(H\) vẽ đường thẳng vuông góc với \(AB,\) đường thẳng này cắt đường tròn \(\left( O \right)\) tại C và D. Hai đường thẳng BC và AD cắt nhau tại M. Gọi N là hình chiếu của M trên đường thẳng AB.
a) Chứng minh tứ giác MNAC nội tiếp.
Do \(\angle ACB\) là góc nội tiếp chắn nửa đường tròn nên \(\angle ACB = {90^0} \Rightarrow \angle ACM = {90^0}\).
Xét tứ giác \(MNAC\) có \(\angle ACM + \angle ANM = {90^0} + {90^0} = {180^0}\)
\( \Rightarrow \) Tứ giác \(MNAC\) là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800).’
b) Tính độ dài CH và \(\tan \angle ABC\)
Ta có: \(BH = AB - AH = 6 - 1 = 5\,\,\left( {cm} \right)\)
Áp dụng hệ thức lượng trong tam giác vuông ABC có: \(A{H^2} = HA.HB = 1.5 = 5 \Rightarrow AH = \sqrt 5 \,\,\left( {cm} \right)\)
\( \Rightarrow \tan \angle ABC = \dfrac{{HA}}{{HB}} = \dfrac{{\sqrt 5 }}{5} = \dfrac{1}{{\sqrt 5 }}\)
c) Chứng minh NC là tiếp tuyến của đường tròn \(\left( O \right)\).
Ta có \(MN \bot AB;\,\,CH \bot AB \Rightarrow MN//CH\)
\( \Rightarrow \angle AMN = \angle ADC\) (so le trong)
Mà \(\angle AMN = \angle ACN\) (hai góc nội tiếp cùng chắn cung AN) \( \Rightarrow \angle ACN = \angle ADC\).
Mà \(\angle ADC\) nội tiếp chắn cung AC, \(\angle ACN\) ở vị trí góc tạo bởi tiếp tuyến và dây cung chắn cung AC.
\( \Rightarrow CN\) là tiếp tuyến của đường tròn \(\left( O \right)\) tại C.
d) Tiếp tuyến tại A của đường tròn \(\left( O \right)\) cắt NC tại E. Chứng minh đường thẳng EB đi qua trung điểm của đoan thẳng CH.
Kéo dài AE cắt BM tại F.
Ta có \(EA = EC\,\,\left( 1 \right)\) (tính chất hai tiếp tuyến cắt nhau) \( \Rightarrow \Delta EAC\) cân tại E \( \Rightarrow \angle EAC = \angle ECA\)
\( \Rightarrow {90^0} - \angle EAC = {90^0} - \angle ECA \)
\(\Leftrightarrow \angle EFC = \angle ECF \) \(\Rightarrow \Delta EFC\) cân tại E \( \Rightarrow EC = EF\) (2)
Từ (1) và (2) \( \Rightarrow EA = EC = EF\)
Ta có \(AF \bot AB\,\left( {gt} \right);\,\,CH \bot AB\,\,\left( {gt} \right) \Rightarrow AF//CH\)
Gọi \(I = BE \cap AF\), áp dụng định lí Ta-let ta có: \(\dfrac{{HI}}{{AE}} = \dfrac{{BI}}{{BE}};\,\,\dfrac{{CI}}{{EF}} = \dfrac{{BI}}{{BE}} \Rightarrow \dfrac{{HI}}{{AE}} = \dfrac{{CI}}{{EF}}\).
Mà \(AE = EF\,\,\left( {cmt} \right) \Rightarrow HI = CI \Rightarrow I\) là trung điểm của HC. (đpcm)