-
NA
-
Đề thi vào 10 môn Toán Hà Nội
-
1. Đề thi minh hoạ vào 10 môn Toán Hà Nội năm 2025
-
2. Đề thi vào 10 môn Toán Hà Nội năm 2023
-
3. Đề thi vào 10 môn Toán Hà Nội năm 2021
-
4. Đề thi vào 10 môn Toán Hà Nội năm 2020
-
5. Đề thi vào 10 môn Toán Hà Nội năm 2019
-
6. Đề thi vào 10 môn Toán Hà Nội năm 2018
-
7. Đề thi vào 10 môn Toán Hà Nội năm 2017
-
-
Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh
-
Đề thi vào 10 môn Toán Đồng Nai
-
Đề thi vào 10 môn Toán Đà Nẵng
-
Đề thi vào 10 môn Toán Bình Dương
-
Đề thi vào 10 môn Toán Bắc Ninh
-
Đề thi vào 10 môn Toán Hải Dương
-
Đề thi vào 10 môn Toán Nghệ An
-
Đề thi vào 10 môn Toán Hải Phòng
-
Đề thi vào 10 môn Toán Đắk Lắk
-
Đề thi vào 10 môn Toán Lâm Đồng
-
Đề thi vào 10 môn Toán Vĩnh Phúc
-
Đề thi vào 10 môn Toán Thanh Hóa
-
Đề thi vào 10 môn Toán Hưng Yên
-
Đề thi vào 10 môn Toán Bình Định
-
Đề thi vào 10 môn Toán Bắc Giang
-
Đề thi vào 10 môn Toán An Giang
-
Đề thi vào 10 môn Toán Khánh Hòa
-
Đề thi vào 10 môn Toán Cần Thơ
-
Đề thi vào 10 môn Toán Quảng Ninh
-
Đề thi vào 10 môn Toán Nam Định
-
Đề thi vào 10 môn Toán Thái Bình
-
Đề thi vào 10 môn Toán Quảng Ngãi
-
Đề thi vào 10 môn Toán Huế
-
Đề thi vào 10 môn Toán Thái Nguyên
-
Đề thi vào 10 môn Toán Phú Thọ
-
Đề thi vào 10 môn Toán Bình Thuận
-
Đề thi vào 10 môn Toán Tiền Giang
-
Đề thi vào 10 môn Toán Phú Yên
-
Đề thi vào 10 môn Toán Đồng Tháp
-
Đề thi vào 10 môn Toán Hà Tĩnh
-
Đề thi vào 10 môn Toán Kiên Giang
-
Đề thi vào 10 môn Toán Vĩnh Long
-
Đề thi vào 10 môn Toán Bình Phước
-
Đề thi vào 10 môn Toán Tây Ninh
-
Đề thi vào 10 môn Toán Bến Tre
-
Đề thi vào 10 môn Toán Cà Mau
-
Đề thi vào 10 môn Toán Quảng Bình
-
Đề thi vào 10 môn Toán Ninh Bình
-
Đề thi vào 10 môn Toán Hà Nam
-
Đề thi vào 10 môn Toán Quảng Trị
-
Đề thi vào 10 môn Toán Bạc Liêu
-
Đề thi vào 10 môn Toán Sóc Trăng
-
Đề thi vào 10 môn Toán Tuyên Quang
-
Đề thi vào 10 môn Toán Ninh Thuận
-
Đề thi vào 10 môn Toán Hòa Bình
-
Đề thi vào 10 môn Toán Đắk Nông
-
Đề thi vào 10 môn Toán Sơn La
-
Đề thi vào 10 môn Toán Trà Vinh
-
Đề thi vào 10 môn Toán Lào Cai
-
Đề thi vào 10 môn Toán Hậu Giang
-
Đề thi vào 10 môn Toán Yên Bái
-
Đề thi vào 10 môn Toán Lạng Sơn
-
Đề thi vào 10 môn Toán Long An
-
Đề thi vào 10 môn Toán Quảng Nam
-
Tổng hợp 50 đề thi vào 10 môn Toán
-
1. Đề số 1 - Đề thi vào lớp 10 môn Toán
-
2. Đề số 2 - Đề thi vào lớp 10 môn Toán
-
3. Đề số 3 - Đề thi vào lớp 10 môn Toán
-
4. Đề số 4 - Đề thi vào lớp 10 môn Toán
-
5. Đề số 5 - Đề thi vào lớp 10 môn Toán
-
6. Đề số 6 - Đề thi vào lớp 10 môn Toán
-
7. Đề số 7 - Đề thi vào lớp 10 môn Toán
-
8. Đề số 8 - Đề thi vào lớp 10 môn Toán
-
9. Đề số 9 - Đề thi vào lớp 10 môn Toán
-
10. Đề số 10 - Đề thi vào lớp 10 môn Toán
-
11. Đề số 11 - Đề thi vào lớp 10 môn Toán
-
12. Đề số 12 - Đề thi vào lớp 10 môn Toán
-
13. Đề số 13 - Đề thi vào lớp 10 môn Toán
-
14. Đề số 14 - Đề thi vào lớp 10 môn Toán
-
15. Đề số 15 - Đề thi vào lớp 10 môn Toán
-
16. Đề số 16 - Đề thi vào lớp 10 môn Toán
-
17. Đề số 17 - Đề thi vào lớp 10 môn Toán
-
18. Đề số 18 - Đề thi vào lớp 10 môn Toán
-
19. Đề số 19 - Đề thi vào lớp 10 môn Toán
-
20. Đề số 20 - Đề thi vào lớp 10 môn Toán
-
21. Đề số 21 - Đề thi vào lớp 10 môn Toán
-
22. Đề số 22 - Đề thi vào lớp 10 môn Toán
-
23. Đề số 23 - Đề thi vào lớp 10 môn Toán
-
24. Đề số 24 - Đề thi vào lớp 10 môn Toán
-
25. Đề số 25 - Đề thi vào lớp 10 môn Toán
-
26. Đề số 26 - Đề thi vào lớp 10 môn Toán
-
27. Đề số 27 - Đề thi vào lớp 10 môn Toán
-
28. Đề số 28 - Đề thi vào lớp 10 môn Toán
-
29. Đề số 29 - Đề thi vào lớp 10 môn Toán
-
30. Đề số 30 - Đề thi vào lớp 10 môn Toán
-
31. Đề số 31 - Đề thi vào lớp 10 môn Toán
-
32. Đề số 32 - Đề thi vào lớp 10 môn Toán
-
33. Đề số 33 - Đề thi vào lớp 10 môn Toán
-
34. Đề số 34 - Đề thi vào lớp 10 môn Toán
-
35. Đề số 35 - Đề thi vào lớp 10 môn Toán
-
36. Đề số 36 - Đề thi vào lớp 10 môn Toán
-
37. Đề số 37 - Đề thi vào lớp 10 môn Toán
-
38. Đề số 38 - Đề thi vào lớp 10 môn Toán
-
39. Đề số 39 - Đề thi vào lớp 10 môn Toán
-
40. Đề số 40 - Đề thi vào lớp 10 môn Toán
-
41. Đề số 41 - Đề thi vào lớp 10 môn Toán
-
42. Đề số 42 - Đề thi vào lớp 10 môn Toán
-
43. Đề số 43 - Đề thi vào lớp 10 môn Toán
-
Đề thi vào 10 môn Toán Đắk Lắk năm 2021
Đề bài
Câu 1 (1,5 điểm)
1) Giải phương trình: \(2{x^2} + 5x - 3 = 0.\)
2) Cho hàm số \(y = \left( {m - 1} \right)x + 2021.\) Tìm tất cả các giá trị của tham số m để đồ thị hàm số đồng biến trên \(\mathbb{R}\).
3) Cho \(a = 1 + \sqrt 2 \) và \(b = 1 - \sqrt 2 \). Tính giá trị của biểu thức \(P = a + b - 2ab.\)
Câu 2 (2,0 điểm):
Cho biểu thức: \(P = \dfrac{{2\sqrt x - 9}}{{x - 5\sqrt x + 6}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} + \dfrac{{2\sqrt x + 1}}{{\sqrt x - 3}}\) với \(x \ge 0,x \ne 4,x \ne 9\)
1) Rút gọn biểu thức \(P\)
2) Tìm tất cả các giá trị của \(x\) để \(P > 1\)
Câu 3 (2,0 điểm):
1) Trong mặt phẳng tọa độ \(Oxy\), viết phương trình đường thẳng \(\Delta \) đi qua điểm \(A\left( {1; - 2} \right)\)song song với đường thẳng \(y = 2x - 1\).
2) Trong mặt phẳng tọa độ \(Oxy\), cho Parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y = 2\left( {m - 1} \right)x - m + 3\). Gọi \({x_1},{x_2}\) lần lượt là hoành độ giao điểm của đường thẳng \(\left( d \right)\) và Parabol \(\left( P \right)\). Tìm giá trị nhỏ nhất của biểu thức \(M = x_1^2 + x_2^2\).
Câu 4 (3,5 điểm):
Trên nửa đường tròn tâm \(O\)đường kính \(AB\) với \(AB = 2022\), lấy điểm \(C\) (\(C\) khác \(A\) và \(B\)) từ \(C\) kẻ \(CH\) vuông góc với \(AB\)\(\left( {H \in AB} \right)\). Gọi \(D\) là điểm bất kì trên đoạn \(CH\)(\(D\) khác \(C,H\)), đường thẳng \(AD\) cắt nửa đường tròn tại điểm thứ hai \(E\).
1) Chứng minh \(BHDE\) nội tiếp.
2) Chứng minh \(AD.EC = CD.AC\)
3) Chứng minh \(AD.AE + BH.BA = {2022^2}\)
4) Khi điểm \(C\) di động trên nửa đường tròn \(C\) khác \(A,\,B\) và điểm chính giữa cung \(AB\), xác định vị trí điểm \(C\) sao cho chu vi tam giác \(COH\) đạt giá trị lớn nhất.
Câu 5 (1,0 điểm):
Cho \(a \ge 1348,\,\,b \ge 1348\). Chứng minh \({a^2} + {b^2} + ab \ge 2022\left( {a + b} \right)\).
Lời giải chi tiết
Câu 1 (1,5 điểm) 1) Giải phương trình: \(2{x^2} + 5x - 3 = 0.\) 2) Cho hàm số \(y = \left( {m - 1} \right)x + 2021.\) Tìm tất cả các giá trị của tham số m để đồ thị hàm số đồng biến trên \(\mathbb{R}\). 3) Cho \(a = 1 + \sqrt 2 \) và \(b = 1 - \sqrt 2 \). Tính giá trị của biểu thức \(P = a + b - 2ab.\) |
Phương pháp:
1) Tính \(\Delta = {b^2} - 4ac\) (hoặc \(\Delta ' = {\left( {b'} \right)^2} - ac\)), sử dụng công thức nghiệm của phương trình bậc hai một ẩn: \({x_{1,2}} = \dfrac{{ - b \pm \sqrt \Delta }}{{2a}}\) (hoặc \({x_{1,2}} = \dfrac{{ - b' \pm \sqrt {\Delta '} }}{a}\)), tính được nghiệm của phương trình, kết luận.
2) Hàm số \(y = ax + b\) đồng biến trên \(\mathbb{R} \Leftrightarrow a > 0\)
3) Thay \(a = 1 + \sqrt 2 \) và \(b = 1 - \sqrt 2 \) vào \(P\), sau đó tính toán.
Cách giải:
1) Xét phương trình \(2{x^2} + 5x - 3 = 0\)
Ta có: \(\Delta = {5^2} + 24 = 49 > 0\)
\( \Rightarrow \) Phương trình có hai nghiệm: \({x_1} = \dfrac{{ - 5 + \sqrt {49} }}{4} = \dfrac{1}{2}\); \({x_2} = \dfrac{{ - 5 - \sqrt {49} }}{4} = - 3\)
Vậy phương trình có tập nghiệm: \(S = \left\{ { - 3;\,\,\dfrac{1}{2}} \right\}\).
2) Hàm số \(y = \left( {m - 1} \right)x + 2021\) đồng biến trên \(\mathbb{R}\) khi và chỉ khi: \(m - 1 > 0 \Leftrightarrow m > 1\)
Vậy với \(m > 1\) thì hàm số đồng biến trên \(\mathbb{R}\).
3) Thay \(a = 1 + \sqrt 2 \) và \(b = 1 - \sqrt 2 \) vào \(P = a + b - 2ab\) ta được:
\(\begin{array}{l}P = 1 + \sqrt 2 + 1 - \sqrt 2 - 2\left( {1 + \sqrt 2 } \right)\left( {1 - \sqrt 2 } \right)\\\,\,\,\, = 2 - 2\left[ {1 - {{\left( {\sqrt 2 } \right)}^2}} \right]\\\,\,\, = 2 - 2\left( {1 - 2} \right)\\\,\,\, = 2 + 2 = 4.\end{array}\)
Vậy \(P = 4\) khi \(a = 1 + \sqrt 2 \) và \(b = 1 - \sqrt 2 .\)
Câu 2 (2,0 điểm): Cho biểu thức: \(P = \dfrac{{2\sqrt x - 9}}{{x - 5\sqrt x + 6}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} + \dfrac{{2\sqrt x + 1}}{{\sqrt x - 3}}\) với \(x \ge 0,x \ne 4,x \ne 9\) 1) Rút gọn biểu thức \(P\) 2) Tìm tất cả các giá trị của \(x\) để \(P > 1\) |
Phương pháp:
1) Xác định mẫu thức chung của biểu thức
Quy đồng các phân thức, thực hiện các phép toán từ đó rút gọn được biểu thức.
2) Vì \(P > 1 \Leftrightarrow P - 1 > 0\)
Rút gọn \(P - 1\)
\(\dfrac{{f\left( x \right)}}{{g\left( x \right)}} > 0\) khi \(f\left( x \right)\) và \(g\left( x \right)\) cùng âm hoặc dương.
Cách giải:
1) ĐKXĐ: \(x \ge 0,x \ne 4,x \ne 9\)
\(\begin{array}{l}P = \dfrac{{2\sqrt x - 9}}{{x - 5\sqrt x + 6}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} + \dfrac{{2\sqrt x + 1}}{{\sqrt x - 3}}\\\,\,\,\,\, = \dfrac{{2\sqrt x - 9}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} + \dfrac{{2\sqrt x + 1}}{{\sqrt x - 3}}\\\,\,\,\,\, = \dfrac{{2\sqrt x - 9 - \left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right) + \left( {2\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\\,\,\,\,\, = \dfrac{{2\sqrt x - 9 - \left( {x - 9} \right) + \left( {2x - 3\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\\,\,\,\,\, = \dfrac{{2\sqrt x - 9 - x + 9 + 2x - 3\sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\\,\,\,\,\, = \dfrac{{x - \sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\\,\,\,\, = \dfrac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} = \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}}\end{array}\)
Vậy với \(x \ge 0,\,\,x \ne 4,\,\,x \ne 9\) ta có \(B = \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}}.\)
b) Điều kiện: \(x \ge 0,\,\,x \ne 4,\,\,x \ne 9\)
\(\begin{array}{l}P > 1 \Leftrightarrow \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}} > 1\\ \Leftrightarrow \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}} - 1 > 0\\ \Leftrightarrow \dfrac{{\sqrt x + 1 - \left( {\sqrt x - 3} \right)}}{{\sqrt x - 3}} > 0\\ \Leftrightarrow \dfrac{4}{{\sqrt x - 3}} > 0\\ \Leftrightarrow \sqrt x - 3 > 0\,\,\,\left( {do\,\,\,4 > 0} \right)\\ \Leftrightarrow \sqrt x > 3\\ \Leftrightarrow x > 9\end{array}\)
Kết hợp với điều kiện xác định ta được \(x > 9\) thì \(P > 1\)
Vậy \(x > 9\) thì \(P > 1.\)
Câu 3 (2,0 điểm): 1) Trong mặt phẳng tọa độ \(Oxy\), viết phương trình đường thẳng \(\Delta \) đi qua điểm \(A\left( {1; - 2} \right)\)song song với đường thẳng \(y = 2x - 1\). 2) Trong mặt phẳng tọa độ \(Oxy\), cho Parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y = 2\left( {m - 1} \right)x - m + 3\). Gọi \({x_1},{x_2}\) lần lượt là hoành độ giao điểm của đường thẳng \(\left( d \right)\) và Parabol \(\left( P \right)\). Tìm giá trị nhỏ nhất của biểu thức \(M = x_1^2 + x_2^2\). |
Phương pháp:
1) Viết phương trình đường thẳng \(\Delta \) biết \(\Delta \) đi qua điểm \(A\left( {{x_A};{y_A}} \right)\) và song song với \(d:y = a'x + b'\) (\(a';b'\) đã biết)
Gọi phương trình đường thẳng\(\Delta \) là \(y = ax + b\,\,\,\left( {a \ne 0} \right)\)
Vì \(\Delta //d \Rightarrow \left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right.\)
\( \Rightarrow d:y = a'x + b\)
\(\Delta \) đi qua điểm \(A\left( {{x_A};{y_A}} \right)\), từ đó tìm được \(b\), đối chiếu điều kiện ở trên
Kết luận phương trình đường thẳng cần tìm.
2) Xét phương trình hoành độ giao điểm giữa \(\left( P \right)\) và \(\left( d \right)\) \(\left( 1 \right)\)
Để \(\left( P \right)\) cắt \(\left( d \right)\) tại hai điểm phân biệt \( \Leftrightarrow \left( 1 \right)\) có hai nghiệm phân biệt \({x_1},\,\,{x_2}\).
\( \Leftrightarrow \Delta > 0\)
Áp dụng hệ thức Vi – ét, tính được \({x_1} + {x_2};{x_1}.{x_2}\) theo \(m\)
Thay vào \(M = x_1^2 + x_2^2\), vận dụng hằng đẳng thức tìm được giá trị nhỏ nhất của \(M\)
Cách giải:
1) Gọi phương trình đường thẳng\(\Delta \) là \(y = ax + b\,\,\,\left( {a \ne 0} \right)\)
Vì \(\Delta \) song song với đường thẳng \(y = 2x - 1\) nên \(\left\{ \begin{array}{l}a = 2\\b \ne - 1\end{array} \right.\).
Vì \(\Delta \) đi qua điểm \(A\left( {1; - 2} \right)\) nên ta có: \( - 2 = a + b\).
Thay \(a = 2\) vào ta được: \( - 2 = 2 + b \Leftrightarrow b = - 4\,\,\,\left( {tm} \right)\).
Vậy đường thẳng \(\Delta \) cần tìm có phương trình là \(y = 2x - 4\).
2) Hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\) là nghiệm của phương trình:
\({x^2} = 2\left( {m - 1} \right)x - m + 3 \Leftrightarrow {x^2} - 2\left( {m - 1} \right)x + m - 3 = 0\,\,\left( * \right)\)
Phương trình (*) có:
\(\begin{array}{l}\Delta ' = {\left( {m - 1} \right)^2} - \left( {m - 3} \right) = {m^2} - 2m + 1 - m + 3\\\,\,\,\,\,\, = {m^2} - 3m + 4 = {\left( {m - \dfrac{3}{2}} \right)^2} + \dfrac{7}{4} > 0\,\,\,\,\forall m \in \mathbb{R}\end{array}\)
\( \Rightarrow \) Phương trình (*) luôn có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) với mọi \(m\).
\( \Rightarrow \) \(\left( d \right)\) luôn cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ \({x_1},{x_2}\) với mọi \(m\).
Áp dụng định lí Vi-et ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m - 1} \right)\\{x_1}{x_2} = m - 3\end{array} \right.\)
Khi đó ta có:
\(\begin{array}{l}\,\,\,\,\,\,M = x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2}\\ \Leftrightarrow M = {\left[ {2\left( {m - 1} \right)} \right]^2} - 2.\left( {m - 3} \right)\\ \Leftrightarrow M = 4{m^2} - 8m + 4 - 2m + 6\\ \Leftrightarrow M = 4{m^2} - 10m + 10\\ \Leftrightarrow M = {\left( {2m} \right)^2} - 2.2m.\dfrac{5}{2} + {\left( {\dfrac{5}{2}} \right)^2} + \dfrac{{15}}{4}\end{array}\)
\( \Leftrightarrow M = {\left( {2m - \dfrac{5}{2}} \right)^2} + \dfrac{{15}}{4} \ge \dfrac{{15}}{4}\,\,\forall m\) (Vì \({\left( {2m - \dfrac{5}{2}} \right)^2} \ge 0\,\,\forall m\))
Vậy \({M_{\min }} = \dfrac{{15}}{4}\). Dấu “=” xảy ra khi và chỉ khi \(2m = \dfrac{5}{2} \Leftrightarrow m = \dfrac{5}{4}\).
Câu 4 (3,5 điểm): Trên nửa đường tròn tâm \(O\)đường kính \(AB\) với \(AB = 2022\), lấy điểm \(C\) (\(C\) khác \(A\) và \(B\)) từ \(C\) kẻ \(CH\) vuông góc với \(AB\)\(\left( {H \in AB} \right)\). Gọi \(D\) là điểm bất kì trên đoạn \(CH\)(\(D\) khác \(C,H\)), đường thẳng \(AD\) cắt nửa đường tròn tại điểm thứ hai \(E\). 1) Chứng minh \(BHDE\) nội tiếp. 2) Chứng minh \(AD.EC = CD.AC\) 3) Chứng minh \(AD.AE + BH.BA = {2022^2}\) 4) Khi điểm \(C\) di động trên nửa đường tròn \(C\) khác \(A,\,B\) và điểm chính giữa cung \(AB\), xác định vị trí điểm \(C\) sao cho chu vi tam giác \(COH\) đạt giá trị lớn nhất. |
Phương pháp:
1) Vận dụng dấu hiệu nhận biết: Tứ giác có tổng hai góc đối bằng \({180^0}\) là tứ giác nội tiếp.
2) Ta sẽ chứng minh:
3) Ta sẽ chứng minh:
Ta có: \(AD.AE + BH.AB = AH.AB + BH.AB = \left( {AH + BH} \right).AB = A{B^2} = {2022^2}\,\,\left( {dpcm} \right)\)
4) Tính chu vi của tam giác \(COH\)
Chu vi tam giác \(COH\) đạt giá trị lớn nhất \( \Leftrightarrow \) \(OH + CH\) đạt giá trị lớn nhất \( \Leftrightarrow \) \({\left( {OH + CH} \right)^2}\) đạt giá trị lớn nhất
Áp dụng định lý cô-si cho \(OH,CH\) tìm được giá trị lớn nhất.
Cách giải:
1) Trong \(\left( O \right)\) ta có \(\angle AEB = {90^0}\)( góc nội tiếp chắn nửa đường tròn)
Tứ giác \(BHDE\) có: \(\angle BED + \angle BHD = {180^0}\).
Suy ra tứ giác \(BHDE\) nội tiếp (dhnb).
2) Ta có:
\(\angle ACD = \angle CBA\) (cùng phụ với \(\angle BCD\)).
\(\angle CEA = \angle CBA\) (2 góc nội tiếp cùng chắn cung \(CA\)).
\( \Rightarrow \angle ACD = \angle CEA\).
Xét tam giác \(ACD\) và tam giác \(AEC\) có: \(\left\{ \begin{array}{l}\angle CAD = \angle CAE\\\angle ACD = \angle CEA\,\,\,\left( {cmt} \right)\end{array} \right.\)
Suy ra \( \Rightarrow \dfrac{{AD}}{{AC}} = \dfrac{{CD}}{{EC}} \Rightarrow AD.EC = CD.AC\,\,\left( {dpcm} \right)\).
3) Xét tam giác \(AHD\) và tam giác \(AEB\) có: \(\left\{ \begin{array}{l}\angle AHD = \angle AEB = {90^0}\\\angle HAD = \angle BAE\end{array} \right.\)
.
Suy ra \(\dfrac{{AH}}{{AE}} = \dfrac{{AD}}{{AB}} \Rightarrow AD.AE = AH.AB\)\(\left( 1 \right)\)
Ta có:
\(\begin{array}{l}AD.AE + BH.AB = AH.AB + BH.AB\\ = \left( {AH + BH} \right).AB = A{B^2} = {2022^2}\,\,\left( {dpcm} \right)\end{array}\)
4) Chu vi tam giác \(COH\) là: \(CO + OH + CH = \dfrac{{AB}}{2} + OH + CH = 1011 + OH + CH\)
Chu vi tam giác \(COH\) đạt giá trị lớn nhất \( \Leftrightarrow \) \(OH + CH\) đạt giá trị lớn nhất \( \Leftrightarrow \) \({\left( {OH + CH} \right)^2}\) đạt giá trị lớn nhất
Ta có: \(0 < OH,CH < OC = 1011\).
Áp dụng định lý cô-si cho \(OH,CH\) ta có:
\({\left( {OH + CH} \right)^2} \le 2\left( {O{H^2} + C{H^2}} \right) = 2.O{C^2} \Rightarrow OH + CH \le OC\sqrt 2 \)
Dấu “=” xảy ra khi \(OH = CH = \dfrac{{OC\sqrt 2 }}{2}\) hay \(\Delta OHC\) vuông cân tại \(H\) \( \Rightarrow \angle COA = {45^0}\).
Vậy chu vi tam giác \(COH\) đạt giá trị lớn nhất khi góc \(COA\) bằng \({45^0}\).
Câu 5 (1,0 điểm): Cho \(a \ge 1348,\,\,b \ge 1348\). Chứng minh \({a^2} + {b^2} + ab \ge 2022\left( {a + b} \right)\). |
Phương pháp:
Xuất phát từ bất đẳng thức: \({a^2} + {b^2} \ge 2ab\).
Cách giải:
Ta có: \({a^2} + {b^2} \ge 2ab \Leftrightarrow {a^2} + {b^2} + ab \ge 3ab\)
\( \Rightarrow {a^2} + {b^2} + ab \ge \dfrac{3}{2}ab + \dfrac{3}{2}ab \ge \dfrac{3}{2}.a.1348 + \dfrac{3}{2}.b.1348\)(Do \(a \ge 1348,\,\,b \ge 1348\))
\( \Rightarrow {a^2} + {b^2} + ab \ge 2022\left( {a + b} \right)\,\,\,\left( {dpcm} \right)\).
Dấu “=” xảy ra khi \(a = b = 1348\).