-
NA
-
Đề thi vào 10 môn Toán Hà Nội
-
1. Đề thi minh hoạ vào 10 môn Toán Hà Nội năm 2025
-
2. Đề thi vào 10 môn Toán Hà Nội năm 2023
-
3. Đề thi vào 10 môn Toán Hà Nội năm 2021
-
4. Đề thi vào 10 môn Toán Hà Nội năm 2020
-
5. Đề thi vào 10 môn Toán Hà Nội năm 2019
-
6. Đề thi vào 10 môn Toán Hà Nội năm 2018
-
7. Đề thi vào 10 môn Toán Hà Nội năm 2017
-
-
Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh
-
Đề thi vào 10 môn Toán Đồng Nai
-
Đề thi vào 10 môn Toán Đà Nẵng
-
Đề thi vào 10 môn Toán Bình Dương
-
Đề thi vào 10 môn Toán Bắc Ninh
-
Đề thi vào 10 môn Toán Hải Dương
-
Đề thi vào 10 môn Toán Nghệ An
-
Đề thi vào 10 môn Toán Hải Phòng
-
Đề thi vào 10 môn Toán Đắk Lắk
-
Đề thi vào 10 môn Toán Lâm Đồng
-
Đề thi vào 10 môn Toán Vĩnh Phúc
-
Đề thi vào 10 môn Toán Thanh Hóa
-
Đề thi vào 10 môn Toán Hưng Yên
-
Đề thi vào 10 môn Toán Bình Định
-
Đề thi vào 10 môn Toán Bắc Giang
-
Đề thi vào 10 môn Toán An Giang
-
Đề thi vào 10 môn Toán Khánh Hòa
-
Đề thi vào 10 môn Toán Cần Thơ
-
Đề thi vào 10 môn Toán Quảng Ninh
-
Đề thi vào 10 môn Toán Nam Định
-
Đề thi vào 10 môn Toán Thái Bình
-
Đề thi vào 10 môn Toán Quảng Ngãi
-
Đề thi vào 10 môn Toán Huế
-
Đề thi vào 10 môn Toán Thái Nguyên
-
Đề thi vào 10 môn Toán Phú Thọ
-
Đề thi vào 10 môn Toán Bình Thuận
-
Đề thi vào 10 môn Toán Tiền Giang
-
Đề thi vào 10 môn Toán Phú Yên
-
Đề thi vào 10 môn Toán Đồng Tháp
-
Đề thi vào 10 môn Toán Hà Tĩnh
-
Đề thi vào 10 môn Toán Kiên Giang
-
Đề thi vào 10 môn Toán Vĩnh Long
-
Đề thi vào 10 môn Toán Bình Phước
-
Đề thi vào 10 môn Toán Tây Ninh
-
Đề thi vào 10 môn Toán Bến Tre
-
Đề thi vào 10 môn Toán Cà Mau
-
Đề thi vào 10 môn Toán Quảng Bình
-
Đề thi vào 10 môn Toán Ninh Bình
-
Đề thi vào 10 môn Toán Hà Nam
-
Đề thi vào 10 môn Toán Quảng Trị
-
Đề thi vào 10 môn Toán Bạc Liêu
-
Đề thi vào 10 môn Toán Sóc Trăng
-
Đề thi vào 10 môn Toán Tuyên Quang
-
Đề thi vào 10 môn Toán Ninh Thuận
-
Đề thi vào 10 môn Toán Hòa Bình
-
Đề thi vào 10 môn Toán Đắk Nông
-
Đề thi vào 10 môn Toán Sơn La
-
Đề thi vào 10 môn Toán Trà Vinh
-
Đề thi vào 10 môn Toán Lào Cai
-
Đề thi vào 10 môn Toán Hậu Giang
-
Đề thi vào 10 môn Toán Yên Bái
-
Đề thi vào 10 môn Toán Lạng Sơn
-
Đề thi vào 10 môn Toán Long An
-
Đề thi vào 10 môn Toán Quảng Nam
-
Tổng hợp 50 đề thi vào 10 môn Toán
-
1. Đề số 1 - Đề thi vào lớp 10 môn Toán
-
2. Đề số 2 - Đề thi vào lớp 10 môn Toán
-
3. Đề số 3 - Đề thi vào lớp 10 môn Toán
-
4. Đề số 4 - Đề thi vào lớp 10 môn Toán
-
5. Đề số 5 - Đề thi vào lớp 10 môn Toán
-
6. Đề số 6 - Đề thi vào lớp 10 môn Toán
-
7. Đề số 7 - Đề thi vào lớp 10 môn Toán
-
8. Đề số 8 - Đề thi vào lớp 10 môn Toán
-
9. Đề số 9 - Đề thi vào lớp 10 môn Toán
-
10. Đề số 10 - Đề thi vào lớp 10 môn Toán
-
11. Đề số 11 - Đề thi vào lớp 10 môn Toán
-
12. Đề số 12 - Đề thi vào lớp 10 môn Toán
-
13. Đề số 13 - Đề thi vào lớp 10 môn Toán
-
14. Đề số 14 - Đề thi vào lớp 10 môn Toán
-
15. Đề số 15 - Đề thi vào lớp 10 môn Toán
-
16. Đề số 16 - Đề thi vào lớp 10 môn Toán
-
17. Đề số 17 - Đề thi vào lớp 10 môn Toán
-
18. Đề số 18 - Đề thi vào lớp 10 môn Toán
-
19. Đề số 19 - Đề thi vào lớp 10 môn Toán
-
20. Đề số 20 - Đề thi vào lớp 10 môn Toán
-
21. Đề số 21 - Đề thi vào lớp 10 môn Toán
-
22. Đề số 22 - Đề thi vào lớp 10 môn Toán
-
23. Đề số 23 - Đề thi vào lớp 10 môn Toán
-
24. Đề số 24 - Đề thi vào lớp 10 môn Toán
-
25. Đề số 25 - Đề thi vào lớp 10 môn Toán
-
26. Đề số 26 - Đề thi vào lớp 10 môn Toán
-
27. Đề số 27 - Đề thi vào lớp 10 môn Toán
-
28. Đề số 28 - Đề thi vào lớp 10 môn Toán
-
29. Đề số 29 - Đề thi vào lớp 10 môn Toán
-
30. Đề số 30 - Đề thi vào lớp 10 môn Toán
-
31. Đề số 31 - Đề thi vào lớp 10 môn Toán
-
32. Đề số 32 - Đề thi vào lớp 10 môn Toán
-
33. Đề số 33 - Đề thi vào lớp 10 môn Toán
-
34. Đề số 34 - Đề thi vào lớp 10 môn Toán
-
35. Đề số 35 - Đề thi vào lớp 10 môn Toán
-
36. Đề số 36 - Đề thi vào lớp 10 môn Toán
-
37. Đề số 37 - Đề thi vào lớp 10 môn Toán
-
38. Đề số 38 - Đề thi vào lớp 10 môn Toán
-
39. Đề số 39 - Đề thi vào lớp 10 môn Toán
-
40. Đề số 40 - Đề thi vào lớp 10 môn Toán
-
41. Đề số 41 - Đề thi vào lớp 10 môn Toán
-
42. Đề số 42 - Đề thi vào lớp 10 môn Toán
-
43. Đề số 43 - Đề thi vào lớp 10 môn Toán
-
Đề thi vào 10 môn Toán Hải Phòng năm 2020
Đề bài
Bài 1:
Cho hai biểu thức: \(A = 3\sqrt 7 - \sqrt {28} + \sqrt {175} - 3\) và \(B = \dfrac{{x - \sqrt x }}{{\sqrt x }} + \dfrac{{x + \sqrt x }}{{\sqrt x + 1}}\) với \(x > 0.\)
a) Rút gọn biểu thức \(A\) và biểu thức \(B.\)
b) Tìm các giá trị của \(x\) để giá trị của biểu thức \(A\) bằng ba lần giá trị của biểu thức \(B.\)
Bài 2:
a) Cho hàm số \(y = ax + b\) có đồ thị là đường thẳng \(\left( d \right)\). Xác định các giá trị của \(a\) và \(b\) biết \(\left( d \right)\) song song với đường thẳng \(y = - \dfrac{1}{2}x + 2020\) và \(\left( d \right)\) cắt trục hoành tại điểm có hoành độ bằng \( - 5\).
b) Giải hệ phương trình \(\left\{ \begin{array}{l}3\left( {x - 1} \right) + 2\left( {x - 2y} \right) = 10\\4\left( {x - 2} \right) - \left( {x - 2y} \right) = 2\end{array} \right.\).
Bài 3:
1. Cho phương trình \({x^2} - 2\left( {m + 1} \right)x + {m^2} - 1 = 0\,\,\,\,\,\left( 1 \right)\) (\(x\) là ẩn số, \(m\) là tham số).
a) Giải phương trình \(\left( 1 \right)\) với \(m = 7.\)
b) Xác định các giá trị của \(m\) để phương trình \(\left( 1 \right)\) có hai nghiệm \({x_1},\,\,{x_2}\) sao cho biểu thức \(M = x_1^2 + x_2^2 - {x_1}{x_2}\) đạt giá trị nhỏ nhất.
2. Bài toán có nội dung thực tế:
Một nhà máy theo kế hoạch phải sản xuất 2100 thùng nước sát khuẩn trong một thời gian quy định (số thùng nước sát khuẩn nhà máy phải sản xuất trong mỗi ngày là bằng nhau). Để đẩy nhanh tiến độ công việc trong giai đoạn tăng cường phòng chống đại dịch COVID-19, mỗi ngày nhà máy đã sản xuất nhiều hơn dự định 35 thùng nước sát khuẩn. Do đó, nhà máy đã hoàn thành công việc trước thời hạn 3 ngày. Hỏi theo kế hoạch, mỗi ngày nhà máy sản xuất bao nhiêu thùng nước sát khuẩn?
Bài 4:
1. Qua điểm \(A\) nằm ngoài đường tròn \(\left( O \right)\) vẽ hai tiếp tuyến \(AB\) và \(AC\) của đường tròn (\(B\) và \(C\) là các tiếp điểm). Gọi \(E\) là trung điểm của của đoạn thẳng \(AC\), \(F\) là giao điểm thứ hai của đường thẳng \(EB\) với đường tròn \(\left( O \right)\), \(K\) là giao điểm của đoạn thẳng \(AC\), \(F\) là giao điểm thứ hai của đường thẳng \(AF\) với đường tròn \(\left( O \right)\). Chứng minh:
a) Tứ giác \(ABOC\) là tứ giác nội tiếp và tam giác \(ABF\) đồng dạng với tam giác \(AKB\).
b) \(BF.CK = CF.BK\).
c) Tam giác \(FCE\) đồng dạng với tam giác \(CBE\) và \(EA\) là tiếp tuyến của đường tròn ngoại tiếp tam giác \(ABF\).
2. Một hình nón có bán kính đáy là \(5\,cm,\) diện tích xung quanh bằng \(65\pi \,\,c{m^2}.\) Tính chiều cao của hình nón đó.
Bài 5:
a) Cho \(x,y\) là hai số thực bất kì. Chứng minh \({x^2} - xy + {y^2} \ge \dfrac{1}{3}\left( {{x^2} + xy + {y^2}} \right)\)
b) Cho \(x,y,z\) là ba số thực dường thỏa mãn \(\sqrt x + \sqrt y + \sqrt z = 2\). Chứng minh
\(\dfrac{{x\sqrt x }}{{x + \sqrt {xy} + y}} + \dfrac{{y\sqrt y }}{{y + \sqrt {yz} + z}} + \dfrac{{z\sqrt z }}{{z + \sqrt {zx} + x}} \ge \dfrac{2}{3}\)
Lời giải chi tiết
Bài 1 (1,5 điểm)
Cách giải:
Cho hai biểu thức: \(A = 3\sqrt 7 - \sqrt {28} + \sqrt {175} - 3\) và \(B = \dfrac{{x - \sqrt x }}{{\sqrt x }} + \dfrac{{x + \sqrt x }}{{\sqrt x + 1}}\) với \(x > 0.\)
a) Rút gọn biểu thức \(A\) và biểu thức \(B.\)
+) Rút gọn biểu thức \(A:\)
\(\begin{array}{l}A = 3\sqrt 7 - \sqrt {28} + \sqrt {175} - 3\\\,\,\,\,\, = 3\sqrt 7 - \sqrt {{2^2}.7} + \sqrt {{5^2}.7} - 3\\\,\,\,\,\, = 3\sqrt 7 - 2\sqrt 7 + 5\sqrt 7 - 3\\\,\,\,\,\, = 6\sqrt 7 - 3.\end{array}\)
+) Rút gọn biểu thức \(B:\)
Điều kiện: \(x > 0.\)
\(\begin{array}{l}B = \dfrac{{x - \sqrt x }}{{\sqrt x }} + \dfrac{{x + \sqrt x }}{{\sqrt x + 1}}\\\,\,\,\, = \dfrac{{\sqrt x \left( {\sqrt x - 1} \right)}}{{\sqrt x }} + \dfrac{{\sqrt x \left( {\sqrt x + 1} \right)}}{{\sqrt x + 1}}\\\,\,\,\, = \sqrt x - 1 + \sqrt x \\\,\,\,\, = 2\sqrt x - 1.\end{array}\)
Vậy với \(A = 6\sqrt 7 - 3\) và \(B = 2\sqrt x \) với \(x > 0.\)
b) Tìm các giá trị của \(x\) để giá trị của biểu thức \(A\) bằng ba lần giá trị của biểu thức \(B.\)
Điều kiện: \(x > 0.\)
Theo đề bài ta có:\(A = 3B\)
\(\begin{array}{l} \Leftrightarrow 6\sqrt 7 - 3 = 3.\left( {2\sqrt x - 1} \right)\\ \Leftrightarrow 6\sqrt 7 - 3 = 6\sqrt x - 3\\ \Leftrightarrow 6\sqrt x = 6\sqrt 7 \\ \Leftrightarrow \sqrt x = \sqrt 7 \\ \Leftrightarrow x = 7\,\,\,\left( {tm} \right)\end{array}\)
Vậy \(x = 7\) thì \(A = 3B.\)
Câu 2 (2,0 điểm)
Cách giải:
a) Cho hàm số \(y = ax + b\) có đồ thị là đường thẳng \(\left( d \right)\). Xác định các giá trị của \(a\) và \(b\) biết \(\left( d \right)\) song song với đường thẳng \(y = - \dfrac{1}{2}x + 2020\) và \(\left( d \right)\) cắt trục hoành tại điểm có hoành độ bằng \( - 5\).
Vì đường thẳng \(\left( d \right):\,\,y = ax + b\) song song với đường thẳng \(y = - \dfrac{1}{2}x + 2020\) nên: \(\left\{ \begin{array}{l}a = - \dfrac{1}{2}\\b \ne 2020\end{array} \right.\).
Khi đó phương trình đường thẳng \(\left( d \right)\) có dạng \(\left( d \right):\,\,y = - \dfrac{1}{2}x + b\), với \(b \ne 2020\).
Vì \(\left( d \right)\) cắt trục hoành tại điểm có hoành độ bằng \( - 5\) nên đường thẳng \(\left( d \right)\) đi qua điểm \(\left( { - 5;0} \right)\).
Thay tọa độ điểm \(\left( { - 5;0} \right)\) và phương trình đường thẳng \(\left( d \right)\) ta có:
\(0 = - \dfrac{1}{2}.\left( { - 5} \right) + b \Leftrightarrow 0 = \dfrac{5}{2} + b \Leftrightarrow b = - \dfrac{5}{2}\) (thỏa mãn).
Vậy \(a = - \dfrac{1}{2}\) và \(b = - \dfrac{5}{2}.\)
b) Giải hệ phương trình \(\left\{ \begin{array}{l}3\left( {x - 1} \right) + 2\left( {x - 2y} \right) = 10\\4\left( {x - 2} \right) - \left( {x - 2y} \right) = 2\end{array} \right.\).
Ta có:
\(\begin{array}{l}\,\,\,\,\,\left\{ \begin{array}{l}3\left( {x - 1} \right) + 2\left( {x - 2y} \right) = 10\\4\left( {x - 2} \right) - \left( {x - 2y} \right) = 2\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}3x - 3 + 2x - 4y = 10\\4x - 8 - x + 2y = 2\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}5x - 4y = 13\\3x + 2y = 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5x - 4y = 13\\6x + 4y = 20\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}11x = 33\\3x + 2y = 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\3.3 + 2y = 10\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 3\\2y = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = \dfrac{1}{2}\end{array} \right.\end{array}\)
Vậy nghiệm của hệ phương trình là \(\left( {x;y} \right) = \left( {3;\dfrac{1}{2}} \right)\).
Bài 3 (2,5 điểm)
Cách giải:
1. Cho phương trình \({x^2} - 2\left( {m + 1} \right)x + {m^2} - 1 = 0\,\,\,\,\,\left( 1 \right)\) (\(x\) là ẩn số, \(m\) là tham số).
a) Giải phương trình \(\left( 1 \right)\) với \(m = 7.\)
Với \(m = 7\) ta có phương trình:
\(\begin{array}{l}\,\,\,\,\,\,\,{x^2} - 2\left( {7 + 1} \right)x + {7^2} - 1 = 0\,\,\,\,\\ \Leftrightarrow {x^2} - 16x + 48 = 0\\ \Leftrightarrow {x^2} - 4x - 12x + 48 = 0\\ \Leftrightarrow x\left( {x - 4} \right) - 12\left( {x - 4} \right) = 0\\ \Leftrightarrow \left( {x - 12} \right)\left( {x - 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 12 = 0\\x - 4 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 12\\x = 4\end{array} \right..\end{array}\)
Vậy với \(m = 7\) thì phương trình có tập nghiệm là \(S = \left\{ {4;\,\,12} \right\}.\)
b) Xác định các giá trị của \(m\) để phương trình \(\left( 1 \right)\) có hai nghiệm \({x_1},\,\,{x_2}\) sao cho biểu thức \(M = x_1^2 + x_2^2 - {x_1}{x_2}\) đạt giá trị nhỏ nhất.
Phương trình \({x^2} - 2\left( {m + 1} \right)x + {m^2} - 1 = 0\,\,\,\,\,\left( 1 \right)\) có hai nghiệm \({x_1},\,\,{x_2}\)
\(\begin{array}{l} \Leftrightarrow \Delta ' \ge 0\\ \Leftrightarrow {\left( {m + 1} \right)^2} - {m^2} + 1 \ge 0\\ \Leftrightarrow {m^2} + 2m + 1 - {m^2} + 1 \ge 0\\ \Leftrightarrow 2m + 2 \ge 0\\ \Leftrightarrow m \ge - 1.\end{array}\)
Với \(m \ge - 1\) thì phương trình \(\left( 1 \right)\) có hai nghiệm \({x_1},\,\,{x_2}.\)
Áp dụng hệ thức Vi-et ta có:\(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m + 1} \right) = 2m + 2\\{x_1}{x_2} = {m^2} - 1\end{array} \right..\)
Theo đề bài ta có:
\(\begin{array}{l}M = x_1^2 + x_2^2 - {x_1}{x_2}\\\,\,\,\,\,\,\,\, = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} - {x_1}{x_2}\\\,\,\,\,\,\,\,\, = {\left( {{x_1} + {x_2}} \right)^2} - 3{x_1}{x_2}\\\,\,\,\,\,\,\,\, = {\left( {2m + 2} \right)^2} - 3\left( {{m^2} - 1} \right)\\\,\,\,\,\,\,\, = 4{m^2} + 8m + 4 - 3{m^2} + 3\\\,\,\,\,\,\,\, = {m^2} + 8m + 7\\\,\,\,\,\,\,\, = {m^2} + 8m + 16 - 9\\\,\,\,\,\,\,\, = {\left( {m + 4} \right)^2} - 9\end{array}\)
Với \(m \ge - 1\) \( \Rightarrow m + 4 \ge 3\) \( \Rightarrow {\left( {m + 4} \right)^2} \ge 9 \Rightarrow {\left( {m + 4} \right)^2} - 9 \ge 0\)
\( \Rightarrow Min\,\,M = 0\)
Dấu “=” xảy ra \( \Leftrightarrow m = - 1\,\,\,\left( {tm} \right).\)
Vậy \(m = - 1\) thỏa mãn điều kiện bài toán.
2. Bài toán có nội dung thực tế:
Một nhà máy theo kế hoạch phải sản xuất 2100 thùng nước sát khuẩn trong một thời gian quy định (số thùng nước sát khuẩn nhà máy phải sản xuất trong mỗi ngày là bằng nhau). Để đẩy nhanh tiến độ công việc trong giai đoạn tăng cường phòng chống đại dịch COVID-19, mỗi ngày nhà máy đã sản xuất nhiều hơn dự định 35 thùng nước sát khuẩn. Do đó, nhà máy đã hoàn thành công việc trước thời hạn 3 ngày. Hỏi theo kế hoạch, mỗi ngày nhà máy sản xuất bao nhiêu thùng nước sát khuẩn?
Gọi số thùng nước sát khuẩn mỗi ngày nhà máy sản xuất được theo kế hoạch là \(x\) (thùng), \(\left( {x < 2100,\,\,x \in {\mathbb{N}^*}} \right).\)
\( \Rightarrow \) Thời gian dự định nhà máy sản xuất xong 2100 thùng nước sát khuẩn là: \(\dfrac{{2100}}{x}\) (ngày).
Thực tế, mỗi ngày nhà máy sản xuất được số thùng nước sát khuẩn là: \(x + 35\) (thùng).
\( \Rightarrow \) Thời gian thực tế nhà máy sản xuất xong 2100 thùng nước sát khuẩn là: \(\dfrac{{2100}}{{x + 35}}\) (ngày).
Nhà máy đã hoàn thành xong công việc trước thời hạn 3 ngày nên ta có phương trình:
\(\begin{array}{l}\,\,\,\,\,\,\,\,\dfrac{{2100}}{x} - \dfrac{{2100}}{{x + 35}} = 3\\ \Leftrightarrow 2100\left( {x + 35} \right) - 2100x = 3x\left( {x + 35} \right)\\ \Leftrightarrow 2100x + 73500 - 2100x = 3{x^2} + 105x\\ \Leftrightarrow 3{x^2} + 105x - 73500 = 0\\ \Leftrightarrow {x^2} + 35x - 24500 = 0\\ \Leftrightarrow {x^2} + 175x - 140x - 24500 = 0\\ \Leftrightarrow x\left( {x + 175} \right) - 140\left( {x + 175} \right) = 0\\ \Leftrightarrow \left( {x + 175} \right)\left( {x - 140} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x + 175 = 0\\x - 140 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 175\,\,\,\left( {ktm} \right)\\x = 140\,\,\,\left( {tm} \right)\end{array} \right.\end{array}\)
Vậy theo kế hoạch, mỗi ngày nhà máy sản xuất được 140 thùng nước sát khuẩn.
Bài 4 (3,5 điểm)
Cách giải:
1. Qua điểm \(A\) nằm ngoài đường tròn \(\left( O \right)\) vẽ hai tiếp tuyến \(AB\) và \(AC\) của đường tròn (\(B\) và \(C\) là các tiếp điểm). Gọi \(E\) là trung điểm của của đoạn thẳng \(AC\), \(F\) là giao điểm thứ hai của đường thẳng \(EB\) với đường tròn \(\left( O \right)\), \(K\) là giao điểm của đoạn thẳng \(AC\), \(F\) là giao điểm thứ hai của đường thẳng \(AF\) với đường tròn \(\left( O \right)\). Chứng minh:
a) Tứ giác \(ABOC\) là tứ giác nội tiếp và tam giác \(ABF\) đồng dạng với tam giác \(AKB\).
Ta có: \(AB,\,\,AC\) là hai tiếp tuyến của \(\left( O \right)\) tại \(B,\,\,C\)
\( \Rightarrow \left\{ \begin{array}{l}OB \bot AB\\OB \bot AC\end{array} \right.\) \( \Rightarrow \angle ABO = \angle ACO = {90^0}\)
Xét tứ giác \(ABOC\) ta có:
\(\angle ABO + \angle ACO = {90^0} + {90^0} = {180^0}\)
Mà hai góc này là hai góc đối diện
\( \Rightarrow ABOC\) là tứ giác nội tiếp (dhnb). (đpcm)
Xét \(\Delta ABF\) và \(\Delta AKB\) ta có:
\(\angle A\) chung
\(\angle AKB = \angle ABF\) (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung \(BF\))
\( \Rightarrow \Delta ABF \sim \Delta AKB\,\,\,\left( {g - g} \right)\,\,\,\left( {dpcm} \right).\)
b) \(BF.CK = CF.BK\).
Ta có: \(\Delta ABF \sim \Delta AKB\,\,\,\left( {cmt} \right)\)
\( \Rightarrow \dfrac{{AB}}{{AK}} = \dfrac{{BF}}{{KB}} = \dfrac{{AF}}{{AB}}\) (các cặp cạnh tương ứng tỉ lệ).
Xét \(\Delta ACF\) và \(\Delta AKC\) ta có:
\(\angle A\) chung
\(\angle AKC = \angle ACF\) (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung \(CF\))
\( \Rightarrow \Delta ACF \sim \Delta AKC\,\,\,\left( {g - g} \right)\,\,\,\left( {dpcm} \right).\)
\( \Rightarrow \dfrac{{AC}}{{AK}} = \dfrac{{CF}}{{KC}} = \dfrac{{AF}}{{AC}}\) (các cặp cạnh tương ứng tỉ lệ).
Mà \(AB = AC\) (tính chất hai tiếp tuyến cắt nhau)
\(\begin{array}{l} \Rightarrow \dfrac{{AB}}{{AK}} = \dfrac{{AC}}{{AK}} = \dfrac{{BF}}{{KB}} = \dfrac{{CF}}{{KC}}\\ \Rightarrow BF.KC = KB.CF\,\,\,\,\left( {dpcm} \right).\end{array}\)
c) Tam giác \(FCE\) đồng dạng với tam giác \(CBE\) và \(EA\) là tiếp tuyến của đường tròn ngoại tiếp tam giác \(ABF\).
Ta có: \(\angle BKC = \angle BCE\) (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung \(BC\))
Lại có: \(BFCK\) là tứ giác nội tiếp đường tròn \(\left( O \right)\)
\( \Rightarrow \angle EFC = \angle BKC\) (góc ngoài tại 1 đỉnh bằng góc trong tại đỉnh đối diện)
\( \Rightarrow EFC = \angle BCE\,\,\left( { = \angle BKC} \right)\)
Xét \(\Delta FCE\) và \(\Delta CBE\) ta có:
\(\begin{array}{l}\angle E\,\,\,chung\\\angle EFC = \angle ECB\,\,\,\left( {cmt} \right)\\ \Rightarrow \Delta FCE \sim \Delta CBE\,\,\,\left( {g - g} \right)\,\,\,\left( {dpcm} \right).\end{array}\)
Vì \(\Delta FCE = \angle CBE\,\,\,\left( {cmt} \right)\)
\(\begin{array}{l} \Rightarrow \dfrac{{FE}}{{CE}} = \dfrac{{CE}}{{BE}} \Rightarrow C{E^2} = FE.BE = A{E^2}\\ \Rightarrow \dfrac{{EA}}{{EB}} = \dfrac{{EF}}{{EA}}\end{array}\)
Xét \(\Delta AEF\) và \(\Delta BEA\) ta có:
\(\begin{array}{l}\angle AEB\,\,\,chung\\\dfrac{{EA}}{{EB}} = \dfrac{{EF}}{{EA}}\,\,\left( {cmt} \right)\\ \Rightarrow \Delta AEF \sim \Delta BEA\,\,\,\left( {c - g - c} \right)\end{array}\)
\( \Rightarrow \angle FAE = \angle ABE\) (hai góc tương ứng)
Mà \(\angle ABE\) là góc nội tiếp chắn cung \(BF\) của đường tròn ngoại tiếp \(\Delta ABF\)
\(\angle FAE\) được tạo bởi dây cung \(AF\) và \(AE\)(\(E\) nằm ngoài đường tròn)
\( \Rightarrow AE\) là tiếp tuyến của đường tròn ngoại tiếp \(\Delta ABF.\) (đpcm)
2. Một hình nón có bán kính đáy là \(5\,cm,\) diện tích xung quanh bằng \(65\pi \,\,c{m^2}.\) Tính chiều cao của hình nón đó.
Ta có: \({S_{xq}} = \pi Rl\) \( \Leftrightarrow 5\pi l = 65\pi \)\( \Leftrightarrow l = \dfrac{{65\pi }}{{5\pi }} = 13\,\,cm.\)
Áp dụng định lý Pitago ta có chiều cao của hình nón là: \(h = \sqrt {{l^2} - {R^2}} = \sqrt {{{13}^2} - {5^2}} = 12\,\,cm.\)
Bài 5 (1,0 điểm)
Cách giải:
a) Cho \(x,y\) là hai số thực bất kì. Chứng minh \({x^2} - xy + {y^2} \ge \dfrac{1}{3}\left( {{x^2} + xy + {y^2}} \right)\)
Ta có:
\(\begin{array}{l}{x^2} - xy + {y^2} \ge \dfrac{1}{3}\left( {{x^2} + xy + {y^2}} \right)\\ \Leftrightarrow 3{x^2} - 3xy + 3{y^2} \ge {x^2} + xy + {y^2}\\ \Leftrightarrow 2{x^2} - 4xy + 2{y^2} \ge 0\\ \Leftrightarrow {x^2} - 2xy + {y^2} \ge 0\end{array}\)
\( \Leftrightarrow {\left( {x - y} \right)^2} \ge 0\) (luôn đúng)
Dấu “=” xảy ra khi \(x = y\).
Vậy ta có đpcm.
b) Cho \(x,y,z\) là ba số thực dường thỏa mãn \(\sqrt x + \sqrt y + \sqrt z = 2\). Chứng minh
\(\dfrac{{x\sqrt x }}{{x + \sqrt {xy} + y}} + \dfrac{{y\sqrt y }}{{y + \sqrt {yz} + z}} + \dfrac{{z\sqrt z }}{{z + \sqrt {zx} + x}} \ge \dfrac{2}{3}\)
Đặt \(\left\{ \begin{array}{l}a = \sqrt x > 0\\b = \sqrt y > 0\\c = \sqrt z > 0\end{array} \right. \Rightarrow a + b + c = 2\) ta được:
\(\begin{array}{l}VT = \dfrac{{{a^3}}}{{{a^2} + ab + {b^2}}} + \dfrac{{{b^3}}}{{{b^2} + bc + {c^2}}} + \dfrac{{{c^3}}}{{{c^2} + ca + {a^2}}}\\ = \dfrac{{{a^4}}}{{{a^3} + {a^2}b + a{b^2}}} + \dfrac{{{b^4}}}{{{b^3} + {b^2}c + b{c^2}}} + \dfrac{{{c^4}}}{{{c^3} + {c^2}a + c{a^2}}}\end{array}\)
Áp dụng BĐT \(\dfrac{{{a^2}}}{x} + \dfrac{{{b^2}}}{y} \ge \dfrac{{{{\left( {a + b} \right)}^2}}}{{x + y}}\) ta có:
\(\begin{array}{l}\dfrac{{{a^4}}}{{{a^3} + {a^2}b + a{b^2}}} + \dfrac{{{b^4}}}{{{b^3} + {b^2}c + b{c^2}}} \ge \dfrac{{{{\left( {{a^2} + {b^2}} \right)}^2}}}{{\left( {{a^3} + {a^2}b + a{b^2}} \right) + \left( {{b^3} + {b^2}c + b{c^2}} \right)}}\\ \Rightarrow \dfrac{{{a^4}}}{{{a^3} + {a^2}b + a{b^2}}} + \dfrac{{{b^4}}}{{{b^3} + {b^2}c + b{c^2}}} + \dfrac{{{c^4}}}{{{c^3} + {c^2}a + c{a^2}}}\\ \ge \dfrac{{{{\left( {{a^2} + {b^2}} \right)}^2}}}{{\left( {{a^3} + {a^2}b + a{b^2}} \right) + \left( {{b^3} + {b^2}c + b{c^2}} \right)}} + \dfrac{{{c^4}}}{{{c^3} + {c^2}a + c{a^2}}}\\ \ge \dfrac{{{{\left( {{a^2} + {b^2} + {c^2}} \right)}^2}}}{{\left( {{a^3} + {a^2}b + a{b^2}} \right) + \left( {{b^3} + {b^2}c + b{c^2}} \right) + \left( {{c^3} + {c^2}a + c{a^2}} \right)}}\\ = \dfrac{{{{\left( {{a^2} + {b^2} + {c^2}} \right)}^2}}}{{{a^3} + {a^2}b + {a^2}c + {b^3} + {b^2}a + {b^2}c + {c^3} + {c^2}a + {c^2}b}}\\ = \dfrac{{{{\left( {{a^2} + {b^2} + {c^2}} \right)}^2}}}{{{a^2}\left( {a + b + c} \right) + {b^2}\left( {a + b + c} \right) + {c^2}\left( {a + b + c} \right)}}\\ = \dfrac{{{{\left( {{a^2} + {b^2} + {c^2}} \right)}^2}}}{{\left( {{a^2} + {b^2} + {c^2}} \right)\left( {a + b + c} \right)}}\\ = \dfrac{{{a^2} + {b^2} + {c^2}}}{{a + b + c}}\\ = \dfrac{1}{2}\left( {\dfrac{{{a^2}}}{1} + \dfrac{{{b^2}}}{1} + \dfrac{{{c^2}}}{1}} \right)\\ \ge \dfrac{1}{2}.\dfrac{{{{\left( {a + b + c} \right)}^2}}}{{1 + 1 + 1}} = \dfrac{1}{2}.\dfrac{{{2^2}}}{3} = \dfrac{2}{3}\end{array}\)
\( \Rightarrow \dfrac{{{a^3}}}{{{a^2} + ab + {b^2}}} + \dfrac{{{b^3}}}{{{b^2} + bc + {c^2}}} + \dfrac{{{c^3}}}{{{c^2} + ca + {a^2}}} \ge \dfrac{2}{3}\) (đpcm)
Dấu “=” xảy ra khi \(a = b = c = \dfrac{2}{3}\).