-
NA
-
Đề thi vào 10 môn Toán Hà Nội
-
1. Đề thi minh hoạ vào 10 môn Toán Hà Nội năm 2025
-
2. Đề thi vào 10 môn Toán Hà Nội năm 2023
-
3. Đề thi vào 10 môn Toán Hà Nội năm 2021
-
4. Đề thi vào 10 môn Toán Hà Nội năm 2020
-
5. Đề thi vào 10 môn Toán Hà Nội năm 2019
-
6. Đề thi vào 10 môn Toán Hà Nội năm 2018
-
7. Đề thi vào 10 môn Toán Hà Nội năm 2017
-
-
Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh
-
Đề thi vào 10 môn Toán Đồng Nai
-
Đề thi vào 10 môn Toán Đà Nẵng
-
Đề thi vào 10 môn Toán Bình Dương
-
Đề thi vào 10 môn Toán Bắc Ninh
-
Đề thi vào 10 môn Toán Hải Dương
-
Đề thi vào 10 môn Toán Nghệ An
-
Đề thi vào 10 môn Toán Hải Phòng
-
Đề thi vào 10 môn Toán Đắk Lắk
-
Đề thi vào 10 môn Toán Lâm Đồng
-
Đề thi vào 10 môn Toán Vĩnh Phúc
-
Đề thi vào 10 môn Toán Thanh Hóa
-
Đề thi vào 10 môn Toán Hưng Yên
-
Đề thi vào 10 môn Toán Bình Định
-
Đề thi vào 10 môn Toán Bắc Giang
-
Đề thi vào 10 môn Toán An Giang
-
Đề thi vào 10 môn Toán Khánh Hòa
-
Đề thi vào 10 môn Toán Cần Thơ
-
Đề thi vào 10 môn Toán Quảng Ninh
-
Đề thi vào 10 môn Toán Nam Định
-
Đề thi vào 10 môn Toán Thái Bình
-
Đề thi vào 10 môn Toán Quảng Ngãi
-
Đề thi vào 10 môn Toán Huế
-
Đề thi vào 10 môn Toán Thái Nguyên
-
Đề thi vào 10 môn Toán Phú Thọ
-
Đề thi vào 10 môn Toán Bình Thuận
-
Đề thi vào 10 môn Toán Tiền Giang
-
Đề thi vào 10 môn Toán Phú Yên
-
Đề thi vào 10 môn Toán Đồng Tháp
-
Đề thi vào 10 môn Toán Hà Tĩnh
-
Đề thi vào 10 môn Toán Kiên Giang
-
Đề thi vào 10 môn Toán Vĩnh Long
-
Đề thi vào 10 môn Toán Bình Phước
-
Đề thi vào 10 môn Toán Tây Ninh
-
Đề thi vào 10 môn Toán Bến Tre
-
Đề thi vào 10 môn Toán Cà Mau
-
Đề thi vào 10 môn Toán Quảng Bình
-
Đề thi vào 10 môn Toán Ninh Bình
-
Đề thi vào 10 môn Toán Hà Nam
-
Đề thi vào 10 môn Toán Quảng Trị
-
Đề thi vào 10 môn Toán Bạc Liêu
-
Đề thi vào 10 môn Toán Sóc Trăng
-
Đề thi vào 10 môn Toán Tuyên Quang
-
Đề thi vào 10 môn Toán Ninh Thuận
-
Đề thi vào 10 môn Toán Hòa Bình
-
Đề thi vào 10 môn Toán Đắk Nông
-
Đề thi vào 10 môn Toán Sơn La
-
Đề thi vào 10 môn Toán Trà Vinh
-
Đề thi vào 10 môn Toán Lào Cai
-
Đề thi vào 10 môn Toán Hậu Giang
-
Đề thi vào 10 môn Toán Yên Bái
-
Đề thi vào 10 môn Toán Lạng Sơn
-
Đề thi vào 10 môn Toán Long An
-
Đề thi vào 10 môn Toán Quảng Nam
-
Tổng hợp 50 đề thi vào 10 môn Toán
-
1. Đề số 1 - Đề thi vào lớp 10 môn Toán
-
2. Đề số 2 - Đề thi vào lớp 10 môn Toán
-
3. Đề số 3 - Đề thi vào lớp 10 môn Toán
-
4. Đề số 4 - Đề thi vào lớp 10 môn Toán
-
5. Đề số 5 - Đề thi vào lớp 10 môn Toán
-
6. Đề số 6 - Đề thi vào lớp 10 môn Toán
-
7. Đề số 7 - Đề thi vào lớp 10 môn Toán
-
8. Đề số 8 - Đề thi vào lớp 10 môn Toán
-
9. Đề số 9 - Đề thi vào lớp 10 môn Toán
-
10. Đề số 10 - Đề thi vào lớp 10 môn Toán
-
11. Đề số 11 - Đề thi vào lớp 10 môn Toán
-
12. Đề số 12 - Đề thi vào lớp 10 môn Toán
-
13. Đề số 13 - Đề thi vào lớp 10 môn Toán
-
14. Đề số 14 - Đề thi vào lớp 10 môn Toán
-
15. Đề số 15 - Đề thi vào lớp 10 môn Toán
-
16. Đề số 16 - Đề thi vào lớp 10 môn Toán
-
17. Đề số 17 - Đề thi vào lớp 10 môn Toán
-
18. Đề số 18 - Đề thi vào lớp 10 môn Toán
-
19. Đề số 19 - Đề thi vào lớp 10 môn Toán
-
20. Đề số 20 - Đề thi vào lớp 10 môn Toán
-
21. Đề số 21 - Đề thi vào lớp 10 môn Toán
-
22. Đề số 22 - Đề thi vào lớp 10 môn Toán
-
23. Đề số 23 - Đề thi vào lớp 10 môn Toán
-
24. Đề số 24 - Đề thi vào lớp 10 môn Toán
-
25. Đề số 25 - Đề thi vào lớp 10 môn Toán
-
26. Đề số 26 - Đề thi vào lớp 10 môn Toán
-
27. Đề số 27 - Đề thi vào lớp 10 môn Toán
-
28. Đề số 28 - Đề thi vào lớp 10 môn Toán
-
29. Đề số 29 - Đề thi vào lớp 10 môn Toán
-
30. Đề số 30 - Đề thi vào lớp 10 môn Toán
-
31. Đề số 31 - Đề thi vào lớp 10 môn Toán
-
32. Đề số 32 - Đề thi vào lớp 10 môn Toán
-
33. Đề số 33 - Đề thi vào lớp 10 môn Toán
-
34. Đề số 34 - Đề thi vào lớp 10 môn Toán
-
35. Đề số 35 - Đề thi vào lớp 10 môn Toán
-
36. Đề số 36 - Đề thi vào lớp 10 môn Toán
-
37. Đề số 37 - Đề thi vào lớp 10 môn Toán
-
38. Đề số 38 - Đề thi vào lớp 10 môn Toán
-
39. Đề số 39 - Đề thi vào lớp 10 môn Toán
-
40. Đề số 40 - Đề thi vào lớp 10 môn Toán
-
41. Đề số 41 - Đề thi vào lớp 10 môn Toán
-
42. Đề số 42 - Đề thi vào lớp 10 môn Toán
-
43. Đề số 43 - Đề thi vào lớp 10 môn Toán
-
Đề thi vào 10 môn Toán Hòa Bình năm 2019
Đề bài
Câu I (2 điểm):
1) Tính:
a) \(A = 3 + \dfrac{1}{2}\) b) \(B = \sqrt {25} - 1\)
2) Tìm \(x\) biết:
a) \(x + 2 = 9\) b) \(\sqrt {x + 1} = 3\)
Câu II (2 điểm):
1) Giải phương trình \({x^2} - 7x + 12 = 0\).
2) Giải hệ phương trình \(\left\{ \begin{array}{l}2x + 3y = - 1\\4x + y = 3\end{array} \right.\)
Câu III (3 điểm):
1) Tìm giá trị \(m\) để đường thẳng \(\left( d \right):\,\,y = x + m\) đi qua điểm \(A\left( {1;2} \right)\). Khi đó hãy vẽ đường thẳng \(\left( d \right)\) trong hệ trục tọa độ \(Oxy\).
2) Cho tam giác \(ABC\) vuông tại \(A\), có đường cao \(AH\). Biết \(AB = 6cm,\,\,BC = 10cm\), tính độ dài \(AH\) và diện tích tam giác \(ABC\).
3) Một người đi xe máy từ A đến B với thời gian và vận tốc đã dự định. Nếu người đó đi nhanh hơn dự định trong mỗi giờ là 10km thì đến đích sớm hơn dự định là 36 phút. Nếu người đó đi chậm hơi dự định trong mỗi giờ là 10km thì đến đích muộn hơn dự định là 1 giờ. Tính vận tốc dự định của người đó và chiều dài quãng đường AB.
Câu IV (2 điểm):
Cho đường tròn \(\left( O \right)\) đường kính \(AB\) và \(C\) là một điểm nằm trên \(\left( O \right)\) (C khác A, B). Đường phân giác của góc \(ACB\) cắt đoạn thẳng \(AB\) tại \(E\) và cắt \(\left( O \right)\) tại điểm thứ hai là \(K\).
1) Chứng minh rằng tam giác \(KAE\) đồng dạng với tam giác \(KCA\).
2) Cho đường tròn \(\left( I \right)\) đi qua điểm \(E\) và tiếp xúc với đường tròn \(\left( O \right)\) tại tiếp điểm \(C\), đường tròn \(\left( I \right)\) cắt \(CA,\,\,CB\) tại điểm thứ hai theo thứ tự là \(M,\,\,N\). Chứng minh rằng \(MN\) song song với \(AB\).
Câu V (1 điểm):
Giải phương trình \({x^2} + \dfrac{{{x^2}}}{{{{\left( {x + 1} \right)}^2}}} = 1\).
Lời giải
Câu I (VD):
Phương pháp:
1a) Quy đồng.
1b) Sử dụng hằng đẳng thức \(\sqrt {{A^2}} = \left| A \right|\).
2a) Chuyển vế tìm \(x\).
2b) Tìm ĐKXĐ.
\(\sqrt A = B\,\,\left( {B \ge 0} \right) \Leftrightarrow A = {B^2}\).
Cách giải:
1a) \(A = 3 + \dfrac{1}{2} = \dfrac{{6 + 1}}{2} = \dfrac{7}{2}\).
Vậy \(A = \dfrac{7}{2}\).
1b) \(B = \sqrt {25} - 1 = \sqrt {{5^2}} - 1 = 5 - 1 = 4\).
Vậy \(B = 4\).
2a) \(x + 2 = 9 \Leftrightarrow x = 9 - 2 \Leftrightarrow x = 7\).
Vậy \(x = 7\).
2b) ĐKXĐ: \(x + 1 \ge 0 \Leftrightarrow x \ge - 1\).
\(\sqrt {x + 1} = 3 \Leftrightarrow x + 1 = 9 \Leftrightarrow x = 9 - 1 \Leftrightarrow x = 8\,\,\left( {tm} \right)\).
Vậy \(x = 8\).
Câu II (VD)
Phương pháp:
1) Giải phương trình bằng cách đưa về dạng tích hoặc sử dụng biệt thức \(\Delta \).
2) Giải hệ phương trình bằng phương pháp thế hoặc cộng đại số.
Cách giải:
1) Giải phương trình \({x^2} - 7x + 12 = 0\).
\(\begin{array}{l}{x^2} - 7x + 12 = 0 \Leftrightarrow {x^2} - 3x - 4x + 12 = 0\\ \Leftrightarrow x\left( {x - 3} \right) - 4\left( {x - 3} \right) = 0 \Leftrightarrow \left( {x - 3} \right)\left( {x - 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 3 = 0\\x - 4 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 4\end{array} \right.\end{array}\)
Vậy tập nghiệm của phương trình là \(S = \left\{ {3;4} \right\}\).
2) Giải hệ phương trình \(\left\{ \begin{array}{l}2x + 3y = - 1\\4x + y = 3\end{array} \right.\)
\(\left\{ \begin{array}{l}2x + 3y = - 1\\4x + y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4x + 6y = - 2\\4x + y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5y = - 5\\2x + 3y = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = - 1\\2x - 3 = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x = 2\\y = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = - 1\end{array} \right.\)
Vậy nghiệm của hệ phương trình là \(\left( {x;y} \right) = \left( {1; - 1} \right)\).
Câu III (VD):
Phương pháp:
1) Thay tọa độ điểm \(A\) vào phương trình đường thẳng \(d\) tìm \(m\), xác định hai điểm mà đường thẳng \(d\) đi qua và vẽ đường thẳng \(d\) trong hệ trục tọa độ \(Oxy\).
2) Áp dụng định lí Pytago và các hệ thức lượng trong tam giác vuông.
3) - Gọi vận tốc dự định và thời gian dự định đi hết quãng đường AB lần lượt là \(x\,\,\left( {km/h} \right)\) và \(y\,\,\left( h \right)\) (ĐK: \(x,y > 0\)).
- Từ mối liên hệ: Quãng đường = Vận tốc \( \times \) Thời gian, lập 2 phương trình liên quan đến \(x;y\).
- Giải hệ phương trình bằng phương pháp thế hoặc cộng đại số và kết luận.
Cách giải:
1) \(A\left( {1;2} \right) \in \left( d \right):\,\,y = x + m\) nên thay tọa độ điểm \(A\) vào phương trình đường thẳng \(\left( d \right)\) ta có:
\(2 = 1 + m \Leftrightarrow m = 2 - 1 \Leftrightarrow m = 1\).
Khi đó, phương trình đường thẳng \(\left( d \right)\) là \(y = x + 1\).
Cho \(x = 0 \Rightarrow y = 1 \Rightarrow \left( d \right)\) đi qua điểm \(B\left( {0;1} \right)\).
Vẽ đường thẳng \(\left( d \right)\).
2) Cho tam giác \(ABC\) vuông tại \(A\), có đường cao \(AH\). Biết \(AB = 6cm,\,\,BC = 10cm\), tính độ dài \(AH\) và diện tích tam giác \(ABC\).
Áp dụng định lí Pytago trong tam giác vuông \(ABC\) ta có:
\(\begin{array}{l}A{B^2} + A{C^2} = B{C^2} \Leftrightarrow {6^2} + A{C^2} = {10^2}\\ \Leftrightarrow A{C^2} = {10^2} - {6^2} = 64 \Leftrightarrow AC = 8\,\,\left( {cm} \right)\end{array}\)
Áp dụng hệ thức lượng trong tam giác vuông \(ABC\) ta có:
\(AH.BC = AB.AC \Leftrightarrow AH.10 = 6.8 \Leftrightarrow AH = \dfrac{{48}}{{10}} = 4,8\,\,\left( {cm} \right)\).
Diện tích tam giác vuông \(ABC\) là \({S_{\Delta ABC}} = \dfrac{1}{2}AB.AC = \dfrac{1}{2}.6.8 = 24\,\,\left( {c{m^2}} \right)\).
3) Một người đi xe máy từ A đến B với thời gian và vận tốc đã dự định. Nếu người đó đi nhanh hơn dự định trong mỗi giờ là 10km thì đến đích sớm hơn dự định là 36 phút. Nếu người đó đi chậm hơi dự định trong mỗi giờ là 10km thì đến đích muộn hơn dự định là 1 giờ. Tính vận tốc dự định của người đó và chiều dài quãng đường AB.
Gọi vận tốc dự định và thời gian dự định đi hết quãng đường AB lần lượt là \(x\,\,\left( {km/h} \right)\) và \(y\,\,\left( h \right)\) (ĐK: \(x,y > 0\)).
Khi đó độ dài quãng đường AB là \(xy\,\,\left( {km} \right)\).
+) Nếu người đó đi nhanh hơn dự định trong mỗi giờ là 10km, tức là đi với vận tốc \(x + 10\,\,\left( {km/h} \right)\) thì người đó đến đích sớm hơn dự định 36 phút = \(\dfrac{{36}}{{60}} = \dfrac{3}{5}\,\,\left( h \right)\), tức là đi hết quãng đường trong \(y - \dfrac{3}{5}\,\,\left( h \right)\).
Khi đó độ dài quãng đường AB là \(\left( {x + 10} \right)\left( {y - \dfrac{3}{5}} \right) = xy\).
\( \Leftrightarrow xy - \dfrac{3}{5}x + 10y - 6 = xy \Leftrightarrow - \dfrac{3}{5}x + 10y - 6 = 0 \Leftrightarrow - 3x + 50y - 30 = 0\,\,\left( 1 \right)\)
+) Nếu người đó đi chậm hơn dự định trong mỗi giờ là 10km, tức là đi với vận tốc \(x - 10\,\,\left( {km/h} \right)\) thì người đó đến đích muộn hơn dự định \(1\,\,\left( h \right)\), tức là đi hết quãng đường trong \(y + 1\,\,\left( h \right)\).
Khi đó độ dài quãng đường AB là \(\left( {x - 10} \right)\left( {y + 1} \right) = xy\).
\( \Leftrightarrow xy + x - 10y - 10 = xy \Leftrightarrow x - 10y - 10 = 0\,\,\left( 2 \right)\)
Từ (1) và (2) ta có hệ phương trình
\(\left\{ \begin{array}{l} - 3x + 50y - 30 = 0\\x - 10y - 10 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x - 50y = - 30\\3x - 30y = 30\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 20y = - 60\\x - 10y - 10 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 3\,\,\left( {tm} \right)\\x - 30 - 10 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 40\\y = 3\end{array} \right.\,\,\left( {tm} \right)\).
Vậy vận tốc dự định và thời gian dự định đi hết quãng đường AB lần lượt là \(40\,\,km/h\) và \(3h\), độ dài quãng đường AB là \(xy = 40.3 = 120\,\,\left( {km} \right)\).
Câu IV (VD):
Phương pháp:
1) Chứng minh rằng tam giác \(KAE\) đồng dạng với tam giác \(KCA\) theo trường hợp góc – góc.
2) Xác định điểm I. Chứng minh \(\left\{ \begin{array}{l}IE\parallel OK\\IE \bot MN\\OK \bot AB\end{array} \right.\), từ đó suy ra \(MN\parallel AB\).
Cách giải:
1) Chứng minh rằng tam giác \(KAE\) đồng dạng với tam giác \(KCA\).
Ta có \(\angle KAB = \angle KCB\) (hai góc nội tiếp cùng chắn cung \(BK\)), lại có \(\angle KCB = \angle KCA\,\,\left( {gt} \right)\).
\( \Rightarrow \angle KAB = \angle KCA\) hay \(\angle KAE = \angle KCA\).
Xét tam giác \(KAE\) và tam giác \(KCA\) có:
2) Cho đường tròn \(\left( I \right)\) đi qua điểm \(E\) và tiếp xúc với đường tròn \(\left( O \right)\) tại tiếp điểm \(C\), đường tròn \(\left( I \right)\) cắt \(CA,\,\,CB\) tại điểm thứ hai theo thứ tự là \(M,\,\,N\). Chứng minh rằng \(MN\) song song với \(AB\).
* Xác định điểm \(I\).
Do \(\left( I \right)\) và \(\left( O \right)\) tiếp xúc tại \(C \Rightarrow I,\,\,O,\,\,C\) thẳng hàng \( \Rightarrow I \in OC\).
Lại có \(\left( I \right)\) đi qua \(C,\,\,E \Rightarrow IC = IE \Rightarrow I\) thuộc trung trực của \(CE\).
Do đó \(I\) là giao điểm của \(OC\) và đường trung trực của \(CE\).
* Chứng minh \(MN\parallel AB\).
Nối \(OK\) ta có: \(\Delta OCK\) cân tại \(O\,\,\left( {OC = OK} \right) \Rightarrow \angle OCK = \angle OKC\).
\(\Delta ICE\) cân tại \(I\,\,\left( {IC = IE} \right) \Rightarrow \angle ICE = \angle IEC\) hay \(\angle OCK = \angle IEC\).
\( \Rightarrow \angle OKC = \angle IEC\). Mà 2 góc này ở vị trí hai góc đồng vị bằng nhau \( \Rightarrow IE\parallel OK\) (1).
Xét đường tròn \(\left( O \right)\): \(\angle ACK = \angle BCK\,\,\left( {gt} \right) \Rightarrow sdcung\,\,AK = \,\,sdcung\,\,BK\) (hai góc nội tiếp bằng nhau chắn hai cung bằng nhau) \( \Rightarrow K\) là điểm chính giữa cung \(AB\) của \(\left( O \right) \Rightarrow OK \bot AB\) (2).
Xét đường tròn \(\left( I \right)\) ta có \(\angle MCN = {90^0} \Rightarrow \angle MCN\) là góc nội tiếp chắn nửa đường tròn) \( \Rightarrow MN\) là đường kính của \(\left( I \right)\).
Ta có: \(\angle ACK = \angle BCK \Rightarrow \angle MCE = \angle NCE \Rightarrow sdcung\,\,ME = \,\,sdcung\,\,NE\) (hai góc nội tiếp bằng nhau chắn hai cung bằng nhau) \( \Rightarrow E\) là điểm chính giữa cung \(MN\) của \(\left( O \right) \Rightarrow IE \bot MN\) (3).
Từ (1), (2) và (3) ta suy ra được \(MN\parallel AB\) (đpcm).
Câu V (VDC) :
Phương pháp:
Biến đổi \({x^2} + \dfrac{{{x^2}}}{{{{\left( {x + 1} \right)}^2}}}{\left( {\dfrac{{{x^2}}}{{x + 1}}} \right)^2} + \dfrac{{2{x^2}}}{{x + 1}}\) sau đó đặt ẩn phụ \(\dfrac{{{x^2}}}{{x + 1}} = t\).
Cách giải:
ĐK: \(x \ne - 1\).
Ta có: \({x^2} + \dfrac{{{x^2}}}{{{{\left( {x + 1} \right)}^2}}} = {\left( {x - \dfrac{x}{{x + 1}}} \right)^2} + 2\dfrac{{{x^2}}}{{x + 1}} = {\left( {\dfrac{{{x^2}}}{{x + 1}}} \right)^2} + \dfrac{{2{x^2}}}{{x + 1}}\).
Khi đó phương trình trở thành \({\left( {\dfrac{{{x^2}}}{{x + 1}}} \right)^2} + \dfrac{{2{x^2}}}{{x + 1}} = 1\).
Đặt \(\dfrac{{{x^2}}}{{x + 1}} = t\) ta có phương trình \({t^2} + 2t = 1 \Leftrightarrow {t^2} + 2t - 1 = 0\,\,\left( * \right)\).
\({\Delta _t}' = {1^2} + 1 = 2 > 0 \Rightarrow \left( * \right)\) có 2 nghiệm phân biệt \(\left[ \begin{array}{l}{t_1} = - 1 + \sqrt 2 \\{t_2} = - 1 - \sqrt 2 \end{array} \right.\).
Với \({t_1} = - 1 + \sqrt 2 \) ta có: \(\dfrac{{{x^2}}}{{x + 1}} = - 1 + \sqrt 2 \Leftrightarrow {x^2} + \left( {1 - \sqrt 2 } \right)x + 1 - \sqrt 2 = 0\).
\(\Delta = {\left( {1 - \sqrt 2 } \right)^2} - 4\left( {1 - \sqrt 2 } \right) = 2\sqrt 2 - 1 > 0 \Rightarrow \) Phương trình có 2 nghiệm phân biệt \(\left[ \begin{array}{l}{x_1} = \dfrac{{\sqrt 2 - 1 + \sqrt {2\sqrt 2 - 1} }}{2}\\{x_2} = \dfrac{{\sqrt 2 - 1 - \sqrt {2\sqrt 2 - 1} }}{2}\end{array} \right.\)
Với \({t_1} = - 1 - \sqrt 2 \) ta có: \(\dfrac{{{x^2}}}{{x + 1}} = - 1 - \sqrt 2 \Leftrightarrow {x^2} + \left( {\sqrt 2 + 1} \right)x + \sqrt 2 + 1 = 0\).
\(\Delta = {\left( {\sqrt 2 + 1} \right)^2} - 4\left( {\sqrt 2 + 1} \right) = - 1 - 2\sqrt 2 < 0 \Rightarrow \) Phương trình vô nghiệm.
Vậy phương trình ban đầu có 2 nghiệm phân biệt \(\left[ \begin{array}{l}{x_1} = \dfrac{{\sqrt 2 - 1 + \sqrt {2\sqrt 2 - 1} }}{2}\\{x_2} = \dfrac{{\sqrt 2 - 1 - \sqrt {2\sqrt 2 - 1} }}{2}\end{array} \right.\).