-
NA
-
Đề thi vào 10 môn Toán Hà Nội
-
1. Đề thi minh hoạ vào 10 môn Toán Hà Nội năm 2025
-
2. Đề thi vào 10 môn Toán Hà Nội năm 2023
-
3. Đề thi vào 10 môn Toán Hà Nội năm 2021
-
4. Đề thi vào 10 môn Toán Hà Nội năm 2020
-
5. Đề thi vào 10 môn Toán Hà Nội năm 2019
-
6. Đề thi vào 10 môn Toán Hà Nội năm 2018
-
7. Đề thi vào 10 môn Toán Hà Nội năm 2017
-
-
Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh
-
Đề thi vào 10 môn Toán Đồng Nai
-
Đề thi vào 10 môn Toán Đà Nẵng
-
Đề thi vào 10 môn Toán Bình Dương
-
Đề thi vào 10 môn Toán Bắc Ninh
-
Đề thi vào 10 môn Toán Hải Dương
-
Đề thi vào 10 môn Toán Nghệ An
-
Đề thi vào 10 môn Toán Hải Phòng
-
Đề thi vào 10 môn Toán Đắk Lắk
-
Đề thi vào 10 môn Toán Lâm Đồng
-
Đề thi vào 10 môn Toán Vĩnh Phúc
-
Đề thi vào 10 môn Toán Thanh Hóa
-
Đề thi vào 10 môn Toán Hưng Yên
-
Đề thi vào 10 môn Toán Bình Định
-
Đề thi vào 10 môn Toán Bắc Giang
-
Đề thi vào 10 môn Toán An Giang
-
Đề thi vào 10 môn Toán Khánh Hòa
-
Đề thi vào 10 môn Toán Cần Thơ
-
Đề thi vào 10 môn Toán Quảng Ninh
-
Đề thi vào 10 môn Toán Nam Định
-
Đề thi vào 10 môn Toán Thái Bình
-
Đề thi vào 10 môn Toán Quảng Ngãi
-
Đề thi vào 10 môn Toán Huế
-
Đề thi vào 10 môn Toán Thái Nguyên
-
Đề thi vào 10 môn Toán Phú Thọ
-
Đề thi vào 10 môn Toán Bình Thuận
-
Đề thi vào 10 môn Toán Tiền Giang
-
Đề thi vào 10 môn Toán Phú Yên
-
Đề thi vào 10 môn Toán Đồng Tháp
-
Đề thi vào 10 môn Toán Hà Tĩnh
-
Đề thi vào 10 môn Toán Kiên Giang
-
Đề thi vào 10 môn Toán Vĩnh Long
-
Đề thi vào 10 môn Toán Bình Phước
-
Đề thi vào 10 môn Toán Tây Ninh
-
Đề thi vào 10 môn Toán Bến Tre
-
Đề thi vào 10 môn Toán Cà Mau
-
Đề thi vào 10 môn Toán Quảng Bình
-
Đề thi vào 10 môn Toán Ninh Bình
-
Đề thi vào 10 môn Toán Hà Nam
-
Đề thi vào 10 môn Toán Quảng Trị
-
Đề thi vào 10 môn Toán Bạc Liêu
-
Đề thi vào 10 môn Toán Sóc Trăng
-
Đề thi vào 10 môn Toán Tuyên Quang
-
Đề thi vào 10 môn Toán Ninh Thuận
-
Đề thi vào 10 môn Toán Hòa Bình
-
Đề thi vào 10 môn Toán Đắk Nông
-
Đề thi vào 10 môn Toán Sơn La
-
Đề thi vào 10 môn Toán Trà Vinh
-
Đề thi vào 10 môn Toán Lào Cai
-
Đề thi vào 10 môn Toán Hậu Giang
-
Đề thi vào 10 môn Toán Yên Bái
-
Đề thi vào 10 môn Toán Lạng Sơn
-
Đề thi vào 10 môn Toán Long An
-
Đề thi vào 10 môn Toán Quảng Nam
-
Tổng hợp 50 đề thi vào 10 môn Toán
-
1. Đề số 1 - Đề thi vào lớp 10 môn Toán
-
2. Đề số 2 - Đề thi vào lớp 10 môn Toán
-
3. Đề số 3 - Đề thi vào lớp 10 môn Toán
-
4. Đề số 4 - Đề thi vào lớp 10 môn Toán
-
5. Đề số 5 - Đề thi vào lớp 10 môn Toán
-
6. Đề số 6 - Đề thi vào lớp 10 môn Toán
-
7. Đề số 7 - Đề thi vào lớp 10 môn Toán
-
8. Đề số 8 - Đề thi vào lớp 10 môn Toán
-
9. Đề số 9 - Đề thi vào lớp 10 môn Toán
-
10. Đề số 10 - Đề thi vào lớp 10 môn Toán
-
11. Đề số 11 - Đề thi vào lớp 10 môn Toán
-
12. Đề số 12 - Đề thi vào lớp 10 môn Toán
-
13. Đề số 13 - Đề thi vào lớp 10 môn Toán
-
14. Đề số 14 - Đề thi vào lớp 10 môn Toán
-
15. Đề số 15 - Đề thi vào lớp 10 môn Toán
-
16. Đề số 16 - Đề thi vào lớp 10 môn Toán
-
17. Đề số 17 - Đề thi vào lớp 10 môn Toán
-
18. Đề số 18 - Đề thi vào lớp 10 môn Toán
-
19. Đề số 19 - Đề thi vào lớp 10 môn Toán
-
20. Đề số 20 - Đề thi vào lớp 10 môn Toán
-
21. Đề số 21 - Đề thi vào lớp 10 môn Toán
-
22. Đề số 22 - Đề thi vào lớp 10 môn Toán
-
23. Đề số 23 - Đề thi vào lớp 10 môn Toán
-
24. Đề số 24 - Đề thi vào lớp 10 môn Toán
-
25. Đề số 25 - Đề thi vào lớp 10 môn Toán
-
26. Đề số 26 - Đề thi vào lớp 10 môn Toán
-
27. Đề số 27 - Đề thi vào lớp 10 môn Toán
-
28. Đề số 28 - Đề thi vào lớp 10 môn Toán
-
29. Đề số 29 - Đề thi vào lớp 10 môn Toán
-
30. Đề số 30 - Đề thi vào lớp 10 môn Toán
-
31. Đề số 31 - Đề thi vào lớp 10 môn Toán
-
32. Đề số 32 - Đề thi vào lớp 10 môn Toán
-
33. Đề số 33 - Đề thi vào lớp 10 môn Toán
-
34. Đề số 34 - Đề thi vào lớp 10 môn Toán
-
35. Đề số 35 - Đề thi vào lớp 10 môn Toán
-
36. Đề số 36 - Đề thi vào lớp 10 môn Toán
-
37. Đề số 37 - Đề thi vào lớp 10 môn Toán
-
38. Đề số 38 - Đề thi vào lớp 10 môn Toán
-
39. Đề số 39 - Đề thi vào lớp 10 môn Toán
-
40. Đề số 40 - Đề thi vào lớp 10 môn Toán
-
41. Đề số 41 - Đề thi vào lớp 10 môn Toán
-
42. Đề số 42 - Đề thi vào lớp 10 môn Toán
-
43. Đề số 43 - Đề thi vào lớp 10 môn Toán
-
Đề thi vào 10 môn Toán Kiên Giang năm 2018
Đề bài
Câu 1 (2 điểm):
a) Tính \(E = 2\sqrt {48} + 3\sqrt {75} - 2\sqrt {108} .\)
b) Tìm điều kiện xác định và rút gọn biểu thức \(P\left( x \right) = \left( {\dfrac{1}{{{x^2} - x}} + \dfrac{1}{{x - 1}}} \right):\dfrac{{x + 1}}{{{x^2} - 2x + 1}}.\)
Câu 2 (2 điểm):
a) Vẽ đồ thị \(\left( P \right)\) của hàm số \(y = 2{x^2}\) trên hệ trục tọa độ \(Oxy.\)
b) Tìm các giá trị của tham số \(m\) để đường thẳng \(\left( {{d_m}} \right):\;\;y = \left( {{m^2} + m - 4} \right)x + m - 7\) song song với đường thẳng \(\left( d \right):\;\;y = 2x - 5.\)
Câu 3 (2 điểm):
a) Gọi \({x_1},\;{x_2}\) là hai nghiệm của phương trình \({x^2} - 2\left( {m - 1} \right)x - 2m - 7 = 0\) (\(m\) là tham số). Tìm các giá trị của \(m\) để biểu thức \(A = x_1^2 + x_2^2 + 6{x_1}{x_2}\) đạt giá trị nhỏ nhất.
b) Bạn Nam mua hai món hàng và phải trả tổng cộng 480000 đồng, trong đó đã tính cả 40000 đồng là thuế giá trị gia tăng (viết tắt là thuế VAT). Biết rằng thuế VAT đối với mặt hàng thứ nhất là 10%, thuế VAT đối với mặt hàng thứ hai là 8%. Hỏi nếu không kể thuế VAT thì bạn Nam phải trả mỗi món hàng là bao nhiêu tiền?
(Trong đó: Thuế VAT là thuế mà người mua hàng phải trả, người bán hàng thu và nộp cho Nhà nước. Giả sử thuế VAT đối với mặt hàng A được quy là 10%. Khi đó nếu giá bán của mặt hàng A là x đồng thì kể cả thuế VAT, người mua phải trả tổng cộng là \(x + 10\% x\) đồng).
Câu 4 (0,5 điểm):
Cho biểu thức \(Q\left( x \right) = \dfrac{{5{x^2} + 6x + 2018}}{{x + 1}}.\) Tìm các giá trị nguyên của \(x\) để \(Q\left( x \right)\) là số nguyên.
Câu 5 (3,5 điểm):
Cho đường tròn \(\left( O \right),\) từ điểm \(A\) ngoài đường tròn vẽ đường thẳng \(AO\) cắt đường tròn \(\left( O \right)\) tại \(B,\;\;C\;\left( {AB < AC} \right).\) Qua \(A\) vẽ đường thẳng không đi qua \(O\) cắt đường tròn \(\left( O \right)\) tại \(D,\;E\;\;\left( {AD < AE} \right).\) Đường thẳng vuông góc với \(AB\) tại \(A\) cắt đường thẳng \(CE\) tại \(F.\)
a) Chứng minh tứ giác \(ABEF\) nội tiếp.
b) Gọi \(M\) là giao điểm thứ hai của \(FB\) với đường tròn \(\left( O \right).\) Chứng minh \(DM \bot AC.\)
c) Chứng minh \(CE.CF + AD.AE = A{C^2}.\)
Lời giải
Câu 1:Phương pháp:
a) Sử dụng công thức: \(\sqrt {{A^2}B} = \left| A \right|\sqrt B = \left\{ \begin{array}{l}A\sqrt B \;\;khi\;\;A \ge 0\\ - A\sqrt B \;\;khi\;\;A < 0\end{array} \right..\)
b) Để phân thức: \(\dfrac{1}{{f\left( x \right)}}\) có nghĩa thì \(f\left( x \right) \ne 0.\)
+) Quy đồng mẫu các phân thức sau đó biến đổi và rút gọn biểu thức.
Cách giải: a) Tính \(E = 2\sqrt {48} + 3\sqrt {75} - 2\sqrt {108} .\)
\(\begin{array}{l}E = 2\sqrt {48} + 3\sqrt {75} - 2\sqrt {108} \\\;\;\; = 2\sqrt {{4^2}.3} + 3\sqrt {{5^2}.3} - 2\sqrt {{6^2}.3} \\\;\;\; = 2.4\sqrt 3 + 3.5\sqrt 3 - 2.6\sqrt 3 \\\;\;\; = 8\sqrt 3 + 15\sqrt 3 - 12\sqrt 3 \\\;\;\; = 11\sqrt 3 .\end{array}\)
Vậy \(E = 11\sqrt 3 .\)
b) Tìm điều kiện xác định và rút gọn biểu thức \(P\left( x \right) = \left( {\dfrac{1}{{{x^2} - x}} + \dfrac{1}{{x - 1}}} \right):\dfrac{{x + 1}}{{{x^2} - 2x + 1}}.\)
Ta có \(P\left( x \right)\) xác định \( \Leftrightarrow \left\{ \begin{array}{l}{x^2} - x \ne 0\\x - 1 \ne 0\\x + 1 \ne 0\\{x^2} - 2x + 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x\left( {x - 1} \right) \ne 0\\x \ne \pm 1\\{\left( {x - 1} \right)^2} \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\x \ne \pm 1\end{array} \right..\)
\(\begin{array}{l}P\left( x \right) = \left( {\dfrac{1}{{{x^2} - x}} + \dfrac{1}{{x - 1}}} \right):\dfrac{{x + 1}}{{{x^2} - 2x + 1}}\\\;\;\;\;\;\;\;\; = \left( {\dfrac{1}{{x\left( {x - 1} \right)}} + \dfrac{1}{{x - 1}}} \right):\dfrac{{x + 1}}{{{{\left( {x - 1} \right)}^2}}}\\\;\;\;\;\;\;\;\; = \dfrac{{x + 1}}{{x\left( {x - 1} \right)}}.\dfrac{{{{\left( {x - 1} \right)}^2}}}{{x + 1}}\\\;\;\;\;\;\;\;\; = \dfrac{{x - 1}}{x}.\end{array}\)
Câu 2:Phương pháp:
a) Lập bảng giá trị mà đồ thị hàm số đi qua sau đó vẽ đồ thị trên hệ trục tọa độ.
b) Hai đường thẳng \(\left\{ \begin{array}{l}{d_1}:\;\;y = {a_1}x + {b_1}\\{d_2}:\;y = {a_2}x + {b_2}\end{array} \right.\) song song \( \Leftrightarrow \left\{ \begin{array}{l}{a_1} = {a_2}\\{b_1} \ne {b_2}\end{array} \right..\)
Cách giải: a) Vẽ đồ thị \(\left( P \right)\) của hàm số \(y = 2{x^2}\) trên hệ trục tọa độ \(Oxy.\)
+) Vẽ đồ thị hàm số \(\left( P \right):\)
\(x\) | \( - 1\) | \( - \dfrac{1}{2}\) | \(0\) | \(\dfrac{1}{2}\) | \(1\) |
\(y = 2{x^2}\) | \(2\) | \(\dfrac{1}{2}\) | \(0\) | \(\dfrac{1}{2}\) | \(2\) |
Đồ thị \(\left( P \right)\) là parabol đi qua các điểm \(\left( { - 1;\;2} \right),\;\;\left( { - \dfrac{1}{2};\;\dfrac{1}{2}} \right),\;\left( {0;\;0} \right),\;\left( {\dfrac{1}{2};\;\dfrac{1}{2}} \right),\;\;\left( {1;\;2} \right).\)
b) Tìm các giá trị của tham số \(m\) để đường thẳng \(\left( {{d_m}} \right):\;\;y = \left( {{m^2} + m - 4} \right)x + m - 7\) song song với đường thẳng \(\left( d \right):\;\;y = 2x - 5.\)
Đường thẳng \(\left( {{d_m}} \right)//d \Leftrightarrow \left\{ \begin{array}{l}{m^2} + m - 4 = 2\\m - 7 \ne - 5\end{array} \right.\)
\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}{m^2} + m - 6 = 0\\m \ne 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {m - 2} \right)\left( {m + 3} \right) = 0\\m \ne 2\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m - 2 = 0\\m + 3 = 0\end{array} \right.\\m \ne 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m = 2\\m = - 3\end{array} \right.\\m \ne 2\end{array} \right. \Leftrightarrow m = - 3.\end{array}\)
Vậy \(m = - 3\)
Câu 3:
Phương pháp:
a) Phương trình có hai nghiệm \( \Leftrightarrow \Delta ' \ge 0.\)
+) Áp dụng hệ thức Vi-ét \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \dfrac{b}{a}\\{x_1}{x_2} = \dfrac{c}{a}\end{array} \right.\) để suy ra giá trị nhỏ nhất của biểu thức bài cho và từ đó tìm \(m.\)
b) Giải bài toàn bằng cách lập hệ phương trình:
+) Gọi ẩn và đặt điều kiện cho ẩn.
+) Biểu diễn các đại lượng chữa biết theo ẩn và đại lượng đã biết.
+) Dựa vào giả thiết của bài toán để lập hệ phương trình.
+) Giải hệ phương trình tìm ẩn và đối chiếu với điều kiện của ẩn rồi kết luận.
Cách giải:
a) Gọi \({x_1},\;{x_2}\) là hai nghiệm của phương trình \({x^2} - 2\left( {m - 1} \right)x - 2m - 7 = 0\) (\(m\) là tham số). Tìm các giá trị của \(m\) để biểu thức \(A = x_1^2 + x_2^2 + 6{x_1}{x_2}\) đạt giá trị nhỏ nhất.
Phương trình có hai nghiệm \({x_1},\;{x_2} \Leftrightarrow \Delta ' \ge 0\)
\(\begin{array}{l} \Leftrightarrow {\left( {m - 1} \right)^2} + 2m + 7 \ge 0\\ \Leftrightarrow {m^2} - 2m + 1 + 2m + 7 \ge 0\\ \Leftrightarrow {m^2} + 8 \ge 0\;\;\;\forall m.\end{array}\)
Hay phương trình luôn có hai nghiệm phân biệt \({x_1},\;{x_2}\) với mọi \(m.\)
Áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m - 1} \right)\\{x_1}{x_2} = - 2m - 7\end{array} \right..\)
Theo đề bài ta có:
\(\begin{array}{l}A = x_1^2 + x_2^2 + 6{x_1}{x_2} = {\left( {{x_1} + {x_2}} \right)^2} + 4{x_1}{x_2}\\\;\;\; = 4{\left( {m - 1} \right)^2} - 4\left( {2m + 7} \right)\\\;\;\; = 4\left( {{m^2} - 2m + 1 - 2m - 7} \right)\\\;\;\; = 4\left( {{m^2} - 4m + 4 - 10} \right)\\\;\;\; = 4\left[ {{{\left( {m - 2} \right)}^2} - 10} \right]\\\;\;\; = 4{\left( {m - 2} \right)^2} - 40.\end{array}\)
Vì \({\left( {m - 2} \right)^2} \ge 0 \Rightarrow 4{\left( {m - 2} \right)^2} \ge 0 \Rightarrow 4{\left( {m - 2} \right)^2} - 40 \ge - 40.\)
\( \Rightarrow A \ge - 40\) hay \(Min\;A = - 40\)
Dấu “=” xảy ra \( \Leftrightarrow m - 2 = 0 \Leftrightarrow m = 2.\)
Vậy \(m = 2.\)
b) Bạn Nam mua hai món hàng và phải trả tổng cộng 480000 đồng, trong đó đã tính cả 40000 đồng là thuế giá trị gia tăng (viết tắt là thuế VAT). Biết rằng thuế VAT đối với mặt hàng thứ nhất là 10%, thuế VAT đối với mặt hàng thứ hai là 8%. Hỏi nếu không kể thuế VAT thì bạn Nam phải trả mỗi món hàng là bao nhiêu tiền?
Gọi số phải trả cho món hàng thứ nhất không kể thuế VAT là \(x\) đồng, \(\left( {0 < x < 480000} \right).\)
Gọi số phải trả cho món hàng thứ nhất không kể thuế VAT là \(y\) đồng, \(\left( {0 < y < 480000} \right).\)
Số tiền phải trả cho hai món hàng không mất thuế là: \(x + y = 480000 - 40000 = 440000.\;\;\;\;\left( 1 \right)\)
Số tiền thuế phải trả cho món hàng thứ nhất là: \(x.10\% = \dfrac{x}{{10}}\) (đồng)
Số tiền thuế phải trả cho món hàng thứ hai là: \(y.8\% = \dfrac{{2y}}{{25}}\) (đồng).
Số tiền thuế phải trả cho hai món hàng là: \(\dfrac{x}{{10}} + \dfrac{{2y}}{{25}} = 40000 \Leftrightarrow 5x + 4y = 2000000\;\;\;\;\;\left( 2 \right).\)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{ \begin{array}{l}x + y = 440000\\5x + 4y = 2000000\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4x + 4y = 1760000\\5x + 4y = 2000000\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 240000\;\;\;\left( {tm} \right)\\y = 200000\;\;\;\left( {tm} \right)\end{array} \right..\)
Vậy số tiền phải trả cho món hàng thứ nhất không phải thuế là 240 000 đồng, món hàng thứ hai là 200 000 đồng.
Câu 4:
Phương pháp:
+) Biến đổi biểu thức về dạng: \(Q\left( x \right) = ax + b + \dfrac{c}{{x + 1}}.\,\,\left( {c = const} \right)\)
+) Khi đó, để \(Q\left( x \right) \in Z\) thì \(\dfrac{c}{{x + 1}} \in Z \Leftrightarrow \left( {x + 1} \right) \in U\left( c \right).\)
+) Từ đó ta giải phương trình hoặc lập bảng để tìm \(x \in Z\) thỏa mãn điều kiện bài toán.
Cách giải:
Cho biểu thức \(Q\left( x \right) = \dfrac{{5{x^2} + 6x + 2018}}{{x + 1}}.\) Tìm các giá trị nguyên của \(x\) để \(Q\left( x \right)\) là số nguyên.
Điều kiện: \(x \ne - 1.\)
Ta có: \(Q\left( x \right) = \dfrac{{5{x^2} + 6x + 2018}}{{x + 1}} = \dfrac{{5{x^2} + 5x + x + 1 + 2017}}{{x + 1}}\)
\( = \dfrac{{5x\left( {x + 1} \right)}}{{x + 1}} + \dfrac{{x + 1}}{{x + 1}} + \dfrac{{2017}}{{x + 1}} = 5x + 1 + \dfrac{{2017}}{{x + 1}}.\) \(\begin{array}{l} \Rightarrow Q\left( x \right) \in Z \Leftrightarrow \left( {5x + 1 + \dfrac{{2017}}{{x + 1}}} \right) \in Z \Leftrightarrow \dfrac{{2017}}{{x + 1}} \in Z\;\;\left( {do\;\;x \in Z} \right)\\ \Leftrightarrow \left( {x + 1} \right) \in U\left( {2017} \right).\end{array}\)
Mà \(U\left( {2017} \right) = \left\{ { - 2017; - 1;\;1;\;2017} \right\}.\)
\( \Rightarrow \left[ \begin{array}{l}x + 1 = - 2017\\x + 1 = - 1\\x + 1 = 1\\x + 1 = 2017\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 2018\;\;\;\left( {tm} \right)\\x = - 2\;\;\;\left( {tm} \right)\\x = 0\;\;\;\;\left( {tm} \right)\\x = 2016\;\;\left( {tm} \right)\end{array} \right..\)
Vậy \(x \in \left\{ { - 2018;\; - 2;\;0;\;\;2016} \right\}.\)
Câu 5:
Cách giải:
Cho đường tròn \(\left( O \right),\) từ điểm \(A\) ngoài đường tròn vẽ đường thẳng \(AO\) cắt đường tròn \(\left( O \right)\) tại \(B,\;\;C\;\left( {AB < AC} \right).\) Qua \(A\) vẽ đường thẳng không đi qua \(O\) cắt đường tròn \(\left( O \right)\) tại \(D,\;E\;\;\left( {AD < AE} \right).\) Đường thẳng vuông góc với \(AB\) tại \(A\) cắt đường thẳng \(CE\) tại \(F.\)
a) Chứng minh tứ giác \(ABEF\) nội tiếp.
Xét đường tròn \(\left( O \right)\) ta có: \(\widehat {BEC} = {90^0}\) (góc nội tiếp chắn nửa đường tròn).
Xét tứ giác \(ABEF\) ta có: \(\widehat {FAB} + \widehat {BEF} = {90^0} + {90^0} = {180^0}.\)
\( \Rightarrow ABEF\) là tứ giác nội tiếp. (tứ giác có tổng hai góc đối diện bằng \({180^0}\)).
b) Gọi \(M\) là giao điểm thứ hai của \(FB\) với đường tròn \(\left( O \right).\) Chứng minh \(DM \bot AC.\)
Vì tứ giác ABEF là tứ giác nội tiếp (cmt) \( \Rightarrow \widehat {AEB} = \widehat {AFB}\) (hai góc nội tiếp cùng chắn cung AB).
Lại có \(\widehat {AEB} = \widehat {BMD}\) (hai góc nội tiếp cùng chắn cung BD của đường tròn (O))
\( \Rightarrow \widehat {AFB} = \widehat {BMD}\). Mà hai góc này ở vị trí so le trong \( \Rightarrow AF//DM\).
Mà \(AF \bot AC \Rightarrow DM \bot AC\).
c) Chứng minh \(CE.CF + AD.AE = A{C^2}.\)
Xét tam giác ACD và tam giác ABE có
\(\widehat {CAE}\) chung;
\(\widehat {ACD} = \widehat {AEB}\) (hai góc nội tiếp cùng chắn cung BD)
\( \Rightarrow \Delta ACD \sim \Delta AEB\,\left( {g.g} \right) \Rightarrow \dfrac{{AC}}{{AE}} = \dfrac{{AD}}{{AB}} \Rightarrow AD.AE = AC.AB\,\,\left( 1 \right)\)
Xét tam giác CBE và tam giác CFA có:
\(\widehat {ACB}\) chung;
\(\widehat {CEB} = \widehat {CAF} = {90^0}\)
\( \Rightarrow \Delta CBE \sim \Delta CFA\,\,\left( {g.g} \right) \Rightarrow \dfrac{{CE}}{{CA}} = \dfrac{{CB}}{{CF}} \Rightarrow CE.CF = CA.CB\,\,\left( 2 \right)\)
Từ (1) và (2) \( \Rightarrow CE.CF + AD.AE = CA.CB + AC.AB = AC\left( {AB + BC} \right) = A{C^2}\,\,\left( {dpcm} \right)\)