- Trang chủ
- Lớp 8
- Toán học Lớp 8
- Lý thuyết Toán 8 Lớp 8
- Chương 10. Một số hình khối trong thực tiễn
- Hình chóp tứ giác đều
-
Chương 1. Đa thức
-
Chương 2. Hằng đẳng thức đáng nhớ và ứng dụng
-
Các hằng đẳng thức đáng nhớ
-
Phân tích đa thức thành nhân tử
- 1. Phân tích đa thức thành nhân tử là gì? Phương pháp đặt nhân tử chung là gì? Phân tích đa thức thành nhân tử như thế nào?
- 2. Phân tích đa thức thành nhân tử là gì? Phương pháp sử dụng hằng đẳng thức là gì? Phân tích đa thức thành nhân tử bằng cách sử dụng hằng đẳng thức như thế nào?
- 3. Phân tích đa thức thành nhân tử là gì? Phương pháp nhóm hạng tử là gì? Phân tích đa thức thành nhân tử bằng cách nhóm hạng tử như thế nào?
-
-
Chương 3. Tứ giác
-
Chương 4. Định lí Thalès
-
Chương 5. Dữ liệu và biểu đồ
-
Chương 6. Phân thức đại số
-
Chương 7. Phương trình bậc nhất và hàm số bậc nhất
-
Chương 8. Mở đầu về tính xác suất của biến cố
-
Chương 9. Tam giác đồng dạng
-
Chương 10. Một số hình khối trong thực tiễn
Diện tích xung quanh hình chóp tứ giác đều
1. Lý thuyết
+ Diện tích xung quanh của hình chóp tứ giác đều bằng nữa tích của chu vi đáy với độ dài trung đoạn.
+ Công thức tổng quát : \({S_{xq}} = \frac{1}{2}.C.d\) . Với :
+ \({S_{xq}}\) : Diện tích xung quanh của hình chóp tứ giác đều.
+ Chu vi đáy : C = 4.a (a là độ dài cạnh đáy hình vuông).
+ d: Độ dài trung đoạn của hình chóp tứ giác đều.
2. Ví dụ minh họa
Cho hình chóp tứ giác đều S.ABCD với kích thước như hình vẽ.
a) Tính chu vi đáy ABCD.
b) Cho biết độ dài trung đoạn hình chóp S.ABC.
c) Tính diện tích xung quanh của hình chóp tứ giác đều S.ABCD.
Lời giải:
a) Chu vi tam giác ABC là: C = 4a = 4.10 = 40 (cm).
b) Độ dài trung đoạn hình chóp S.ABC là d = SI = 12 (cm)
c) Diện tích xung quanh của hình chóp tam giác đều S.ABC là :
\({S_{xq}} = \frac{1}{2}.C.d = \frac{1}{2}.40.12 = 240(c{m^2})\)