Giải bài 1 trang 8 sách bài tập toán 10 tập 2 - Chân trời sáng tạo

Đề bài

Tính biệt thức và nghiệm (nếu có) của tam thức bậc hai sau. Xác định dấu của chúng tại \(x =  - 2\).

a) \(f\left( x \right) =  - 2{x^2} + 3x - 4\).

b) \(g\left( x \right) = 2{x^2} + 8x + 8\).

c) \(h\left( x \right) = 3{x^2} + 7x - 10\).

Phương pháp giải - Xem chi tiết

Biệt thức của tam thức bậc hai \(a{x^2} + bx + c\) là \(\Delta  = {b^2} - 4ac\).

Lời giải chi tiết

a) Biệt thức của f(x) là \(\Delta  = {3^2} - 4.\left( { - 2} \right).\left( { - 4} \right) =  - 23\).

Ta có \(\Delta  < 0\) nên tam thức bậc hai đã cho vô nghiệm.

\(f( - 2) =  - 2.{( - 2)^2} + 3.( - 2) - 4 =  - 18 < 0\) nên \(f(x)\) âm tại \(x =  - 2\).

b) Biệt thức của g(x) là \(\Delta  = {8^2} - 4.2.8 = 0\).

Ta có \(\Delta  = 0\) nên tam thức bậc hai đã cho có nghiệm kép \({x_1} = {x_2} =  - 2\).

Vậy nghiệm của g(x) là \( - 2\).

Do đó \(g( - 2) = 0\) nên \(g(x)\) không âm, không dương tại \(x =  - 2\).

c) Biệt thức của h(x) là \(\Delta  = {7^2} - 4.3.\left( { - 10} \right) = 169\).

Ta có \(\Delta  > 0\) nên tam thức bậc hai đã cho có hai nghiệm là  \(x =  - \frac{{10}}{3}\) hoặc \(x = 1\).

Vậy nghiệm của h(x) là \( - \frac{{10}}{3}\) và 1.

\(h( - 2) = 3.{( - 2)^2} + 7.( - 2) - 10 =  - 12 < 0\) nên \(h(x)\) âm tại \(x =  - 2\).