- Trang chủ
- Lớp 6
- Toán học Lớp 6
- SGK Toán Lớp 6 Chân trời sáng tạo
- Toán 6 tập 2 Chân trời sáng tạo
- CHƯƠNG 3. HÌNH HỌC TRỰC QUAN. CÁC HÌNH PHẲNG TRONG THỰC TIỄN
-
Toán 6 tập 1
-
CHƯƠNG 1.SỐ TỰ NHIÊN
- Bài 1. Tập hợp. Phần tử của tập hợp
- Bài 2. Tập hợp số tự nhiên. Ghi số tự nhiên
- Bài 3. Các phép tính trong tập hợp số tự nhiên
- Bài 4. Lũy thừa với số mũ tự nhiên
- Bài 5. Thứ tự thực hiện các phép tính
- Bài 6. Chia hết và chia có dư. Tính chất chia hết của một tổng
- Bài 7. Dấu hiệu chia hết cho 2, cho 5
- Bài 8. Dấu hiệu chia hết cho 3, cho 9
- Bài 9. Ước và bội
- Bài 10. Số nguyên tố. Hợp số. Phân tích một số ra thừa số nguyên tố
- Bài 11. Hoạt động thực hành và trải nghiệm
- Bài 12. Ước chung. Ước chung lớn nhất
- Bài 13. Bội chung. Bội chung nhỏ nhất
- Bài 14. Hoạt động thực hành và trải nghiệm
- Bài tập cuối chương 1
-
CHƯƠNG 2. SỐ NGUYÊN
-
-
Toán 6 tập 2
-
GIẢI TOÁN 6 MỘT SỐ YẾU TỐ THỐNG KÊ VÀ XÁC XUẤT TẬP 1 CHÂN TRỜI SÁNG TẠO
-
GIẢI TOÁN 6 SỐ VÀ ĐẠI SỐ TẬP 2 CHÂN TRỜI SÁNG TẠO
-
GIẢI TOÁN 6 HÌNH HỌC VÀ ĐO LƯỜNG TẬP 2 CHÂN TRỜI SÁNG TẠO
-
GIẢI TOÁN 6 MỘT SỐ YẾU TỐ THỐNG KÊ VÀ XÁC XUẤT TẬP 2 CHÂN TRỜI SÁNG TẠO
Giải Bài 1 trang 90 SGK Toán 6 Chân trời sáng tạo tập 1
Đề bài
Tính diện tích các hình sau:
a) Hình bình hành có độ dài một cạnh 20 cm và chiều cao tương ứng 5 cm.
b) Hình thoi có độ dài hai đường chéo là 5 m và 20 dm.
c) Hình thang cân có độ dài hai cạnh đáy là 5 m và 3,2 m; chiều cao là 4 m.
Phương pháp giải - Xem chi tiết
a) Diện tích hình bình hành có độ dài một cạnh a và chiều cao tương ứng h là: \(S = a.h\).
b) Diện tích hình thoi có độ dài hai đường chéo m và n là \(S = \frac{{m.n}}{2}\)
c) Diện tích hình thang cân có độ dài hai đáy là a và b, chiều cao h là: \(S = \frac{{\left( {a + b} \right).h}}{2}\).
Lời giải chi tiết
a) \(a = 20cm;h = 5cm\).
Áp dụng công thức tính diện tích ta có:
\(S =20.5=100 \left( {c{m^2}} \right)\).
b) \(m = 5\left( m \right);n = 20\left( {dm} \right) = 2\left( m \right)\)
\( \Rightarrow S = \frac{{m.n}}{2} = \frac{{5.2}}{2} = 5\left( {{m^2}} \right)\)
c) \(a = 5\left( m \right);b = 3,2\left( m \right);h = 4\left( m \right)\)
\( \Rightarrow S = \frac{{\left( {a + b} \right).h}}{2} = \frac{{\left( {5 + 3,2} \right).4}}{2} = 16,4\left( {{m^2}} \right)\).