- Trang chủ
- Lớp 6
- Toán học Lớp 6
- SGK Toán Lớp 6 Chân trời sáng tạo
- Toán 6 tập 1 Chân trời sáng tạo
- CHƯƠNG 1.SỐ TỰ NHIÊN
-
Toán 6 tập 1
-
CHƯƠNG 1.SỐ TỰ NHIÊN
- Bài 1. Tập hợp. Phần tử của tập hợp
- Bài 2. Tập hợp số tự nhiên. Ghi số tự nhiên
- Bài 3. Các phép tính trong tập hợp số tự nhiên
- Bài 4. Lũy thừa với số mũ tự nhiên
- Bài 5. Thứ tự thực hiện các phép tính
- Bài 6. Chia hết và chia có dư. Tính chất chia hết của một tổng
- Bài 7. Dấu hiệu chia hết cho 2, cho 5
- Bài 8. Dấu hiệu chia hết cho 3, cho 9
- Bài 9. Ước và bội
- Bài 10. Số nguyên tố. Hợp số. Phân tích một số ra thừa số nguyên tố
- Bài 11. Hoạt động thực hành và trải nghiệm
- Bài 12. Ước chung. Ước chung lớn nhất
- Bài 13. Bội chung. Bội chung nhỏ nhất
- Bài 14. Hoạt động thực hành và trải nghiệm
- Bài tập cuối chương 1
-
CHƯƠNG 2. SỐ NGUYÊN
-
-
Toán 6 tập 2
-
GIẢI TOÁN 6 MỘT SỐ YẾU TỐ THỐNG KÊ VÀ XÁC XUẤT TẬP 1 CHÂN TRỜI SÁNG TẠO
-
GIẢI TOÁN 6 SỐ VÀ ĐẠI SỐ TẬP 2 CHÂN TRỜI SÁNG TẠO
-
GIẢI TOÁN 6 HÌNH HỌC VÀ ĐO LƯỜNG TẬP 2 CHÂN TRỜI SÁNG TẠO
-
GIẢI TOÁN 6 MỘT SỐ YẾU TỐ THỐNG KÊ VÀ XÁC XUẤT TẬP 2 CHÂN TRỜI SÁNG TẠO
Giải Bài 2 trang 18 SGK Toán 6 Chân trời sáng tạo
Đề bài
a) Viết kết quả mỗi phép tính sau dưới dạng một luỹ thừa.
\({5^7}{.5^5};\,\,\,\,\,{9^5}: {8^{10}};\,\,\,{2^{10}}:64.16\)
b) Viết cấu tạo thập phân của các số 4 983; 54 297; 2 023 theo mẫu sau:
\(4983 = 4.1000+ 9. 100+ 8.10+ 3={4.10^3} + {9.10^2} + 8.10 + 3\)
Phương pháp giải - Xem chi tiết
a) \({a^m}.{a^n} = {a^{m + n}}\) và \({a^m}:{a^n} = {a^{m - n}}(a \ne 0;m \ge n)\)
b) \(\overline {abcde} = a.10000 + b.1000 + c.100 + d.10 + e\)
Lời giải chi tiết
a)
\({5^7}{.5^5} = 5^{7+5}={5^{12}}\)
\({9^5} :{8^0} = {9^5}:1 = {9^5}\)
\(2^{10}:64.16 = 2^{10}:2^6.2^4 = 2^{10-6+4} = 2^8\)
b)
\(\begin{array}{l}54297 = 5.10000 + 4.1000 + 2.100 + 9.10 + 7\\ = {5.10^4} + {4.10^3} + {2.10^2} + 9.10 + 7\end{array}\)
\(\begin{array}{l}2023 = 2.1000 +0.100+2.10 + 3\\ = {2.10^3}+ 2.10 +3\end{array}\)