- Trang chủ
- Lớp 7
- Toán học Lớp 7
- SGK Toán Lớp 7 Chân trời sáng tạo
- Toán 7 tập 2 Chân trời sáng tạo
- Chương 9. Một số yếu tố xác suất
-
GIẢI SGK TOÁN 8 CHÂN TRỜI SÁNG TẠO - MỚI NHẤT
-
Toán 7 tập 1
-
Chương 1. Số hữu tỉ
-
Chương 2. Số thực
-
Chương 3. Các hình khối trong thực tiễn
- Bài 1. Hình hộp chữ nhật. Hình lập phương
- Bài 2. Diện tích xung quanh và thể tích của hình hộp chữ nhật, hình lập phương
- Bài 3. Hình lăng trụ đứng tam giác. Hình lăng trụ đứng tứ giác
- Bài 4. Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác
- Bài 5. Hoạt động thực hành và trải nghiệm: Các bài toán về đo đạc và gấp hình
- Bài tập cuối chương 3
-
Chương 4. Góc và đường thẳng song song
-
Chương 5. Một số yếu tố thống kê
-
-
Toán 7 tập 2
-
Chương 6. Các đại lượng tỉ lệ
-
Chương 7. Biểu thức đại số
-
Chương 8. Tam giác
- Bài 1. Góc và cạnh của một tam giác
- Bài 2. Tam giác bằng nhau
- Bài 3. Tam giác cân
- Bài 4. Đường vuông góc và đường xiên
- Bài 5. Đường trung trực của một đoạn thẳng
- Bài 6. Tính chất ba đường trung trực của tam giác
- Bài 7. Tính chất ba đường trung tuyến của tam giác
- Bài 8. Tính chất ba đường cao của tam giác
- Bài 9. Tính chất ba đường phân giác của tam giác
- Bài 10. Hoạt động thực hành và trải nghiệm: Làm giàn hoa tam giác để trang trí lớp học
- Bài tập cuối chương 8
-
Chương 9. Một số yếu tố xác suất
-
Giải Bài 2 trang 96 SGK Toán 7 tập 2 - Chân trời sáng tạo
Đề bài
Gieo hai con xúc xắc cân đối. Hãy so sánh xác suất xảy ra của các biến cố sau:
A: “Tổng số chấm xuất hiện ở mặt trên hai con xúc xắc là số chẵn”,
B: “Số chấm xuất hiện ở mặt trên hai con xúc xắc đều bằng 6”,
C: “Số chấm xuất hiện ở mặt trên hai con xúc xắc bằng nhau".
Phương pháp giải - Xem chi tiết
Ta tính xác suất xảy ra các biến cố A,B,C sau đó so sánh các biến cố
Lời giải chi tiết
Tổng số chấm xuất hiện ở mặt trên hai con xúc xắc chỉ có thể là số chẵn hoặc số lẻ nên \(P(A) = \frac{1}{2}\).
Số chấm xuất hiện ở mặt trên một con xúc xắc bằng 6 có xác suất xuất hiện là \(\frac{1}{6}\).
Do đó số chấm xuất hiện ở mặt trên hai con xúc xắc đều bằng 6 có xác suất xuất hiện là \(\frac{1}{6}.\frac{1}{6}=\frac{1}{36}\) hay \(P(B) =\frac{1}{36}\).
Có 6 trường hợp số chấm xuất hiện ở mặt trên hai con xúc xắc bằng nhau tức mặt trên hai con xúc xắc cùng xuất hiện 1 chấm, 2 chấm, 3 chấm, 4 chấm, 5 chấm hoặc 6 chấm.
Vì xác suất xuất hiện số chấm ở mặt trên hai con xúc xắc đều bằng 6 là \(\frac{1}{36}\) nên \(P(C) = 6 . \frac{1}{36} = \frac{1}{6}\).
Ta thấy \(\frac{1}{2}>\frac{1}{6}>\frac{1}{36}\) nên P(A) > P(B) > P(C).