Giải bài 2.13 trang 46 sách bài tập toán 12 - Kết nối tri thức

Đề bài

Cho tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Gọi G là giao điểm của MP NQ. Chứng minh rằng \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \)

Phương pháp giải - Xem chi tiết

Chứng minh MNPQ là hình bình hành. Từ đó thực hiện các tính toán với vế trái của đẳng thức cần chứng minh, sử dụng phép cộng vectơ trong hình bình hành, tính chất liên quan đến trung điểm.

Lời giải chi tiết

Xét tam giác ABC M là trung điểm cạnh AB, N là trung điểm cạnh BC, suy ra MN là đường trung bình của tam giác ABC . Vì vậy \(MN\parallel AC\) và \(MN = \frac{1}{2}AC\).

Tương tự ta cũng có PQ là đường trung bình của tam giác ACD do đó \(PQ\parallel AC\) và \(PQ = \frac{1}{2}AC\). Suy ra \(MN\parallel PQ\) và \(MN = PQ\), do đó tứ giác MNPQ là hình bình hành.

Khi đó ta có G là trung điểm của mỗi đường chéo MP NQ.

Suy ra \(\overrightarrow {GM}  =  - \overrightarrow {GP} \) hay \(\overrightarrow {GM}  + \overrightarrow {GP}  = \overrightarrow 0 \).

Ta có: \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = 2\overrightarrow {GM}  + 2\overrightarrow {GP}  = 2\left( {\overrightarrow {GM}  + \overrightarrow {GP} } \right) = \overrightarrow 0 .\)