Giải bài 24 trang 70 sách bài tập toán 9 - Cánh diều tập 2

Đề bài

Không tính \(\Delta \), giải các phương trình:

a) \(7{x^2} + 3\sqrt 3 x - 7 + 3\sqrt 3  = 0;\)

b) \(- 2{x^2} + \left( {5m + 1} \right)x - 5m + 1 = 0.\)

Phương pháp giải - Xem chi tiết

Áp dụng phương pháp nhẩm nghiệm:

- Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(a + b + c = 0\) thì phương trình có một nghiệm là \({x_1} = 1\) và nghiệm còn lại là \({x_2} = \frac{c}{a}.\)

- Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(a - b + c = 0\) thì phương trình có một nghiệm là \({x_1} =  - 1\) và nghiệm còn lại là \({x_2} =  - \frac{c}{a}.\)

Lời giải chi tiết

a) \(7{x^2} + 3\sqrt 3 x - 7 + 3\sqrt 3  = 0\)

Phương trình có các hệ số \(a = 7;b = 3\sqrt 3 ;c =  - 7 + 3\sqrt 3 \).

Ta có \(a - b + c = 7 - 3\sqrt 3  - 7 + 3\sqrt 3  = 0\) nên phương trình có 2 nghiệm phân biệt:

\({x_1} =  - 1;{x_2} = \frac{{ - \left( { - 7 + 3\sqrt 3 } \right)}}{7} = \frac{{7 - 3\sqrt 3 }}{7}\).

b) \( - 2{x^2} + \left( {5m + 1} \right)x - 5m + 1 = 0\)

Phương trình có các hệ số \(a =  - 2;b = 5m + 1;c =  - 5m + 1\).

Ta có \(a + b + c =  - 2 + 5m + 1 - 5m + 1 = 0\) nên phương trình có 2 nghiệm phân biệt:

\({x_1} = 1;{x_2} = \frac{{ - 5m + 1}}{{ - 2}} = \frac{{5m - 1}}{2}\).