- Trang chủ
- Lớp 8
- Toán học Lớp 8
- SGK Toán - Kết nối tri thức Lớp 8
- Toán 8 tập 1 với cuộc sống
- Chương 2 Hằng đẳng thức đáng nhớ và ứng dụng
-
Toán 8 tập 1 với cuộc sống
-
Toán 8 tập 2
Giải bài 2.6 trang 33 SGK Toán 8 tập 1 - Kết nối tri thức
Đề bài
Chứng minh rằng với mọi số tự nhiên n, ta có:
\({\left( {n + 2} \right)^2} - {n^2}\) chia hết cho 4.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng hằng đẳng thức \({a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\)
Nếu 2 số nguyên a, b thỏa mãn a chia hết cho 4 thì a.b chia hết cho 4.
Lời giải chi tiết
Ta có:
\({\left( {n + 2} \right)^2} - {n^2} = \left( {n + 2 - n} \right).\left( {n + 2 + n} \right) = 2.\left( {2n + 2} \right) = 2.2.\left( {n + 1} \right) = 4.\left( {n + 1} \right)\).
Vì \(4 \vdots 4\) nên \(4\left( {n + 1} \right) \vdots 4\) với mọi số tự nhiên n.