- Trang chủ
- Lớp 6
- Toán học Lớp 6
- SGK Toán Lớp 6 Chân trời sáng tạo
- Toán 6 tập 1 Chân trời sáng tạo
- CHƯƠNG 1.SỐ TỰ NHIÊN
-
Toán 6 tập 1
-
CHƯƠNG 1.SỐ TỰ NHIÊN
- Bài 1. Tập hợp. Phần tử của tập hợp
- Bài 2. Tập hợp số tự nhiên. Ghi số tự nhiên
- Bài 3. Các phép tính trong tập hợp số tự nhiên
- Bài 4. Lũy thừa với số mũ tự nhiên
- Bài 5. Thứ tự thực hiện các phép tính
- Bài 6. Chia hết và chia có dư. Tính chất chia hết của một tổng
- Bài 7. Dấu hiệu chia hết cho 2, cho 5
- Bài 8. Dấu hiệu chia hết cho 3, cho 9
- Bài 9. Ước và bội
- Bài 10. Số nguyên tố. Hợp số. Phân tích một số ra thừa số nguyên tố
- Bài 11. Hoạt động thực hành và trải nghiệm
- Bài 12. Ước chung. Ước chung lớn nhất
- Bài 13. Bội chung. Bội chung nhỏ nhất
- Bài 14. Hoạt động thực hành và trải nghiệm
- Bài tập cuối chương 1
-
CHƯƠNG 2. SỐ NGUYÊN
-
-
Toán 6 tập 2
-
GIẢI TOÁN 6 MỘT SỐ YẾU TỐ THỐNG KÊ VÀ XÁC XUẤT TẬP 1 CHÂN TRỜI SÁNG TẠO
-
GIẢI TOÁN 6 SỐ VÀ ĐẠI SỐ TẬP 2 CHÂN TRỜI SÁNG TẠO
-
GIẢI TOÁN 6 HÌNH HỌC VÀ ĐO LƯỜNG TẬP 2 CHÂN TRỜI SÁNG TẠO
-
GIẢI TOÁN 6 MỘT SỐ YẾU TỐ THỐNG KÊ VÀ XÁC XUẤT TẬP 2 CHÂN TRỜI SÁNG TẠO
Giải Bài 3 trang 46 SGK Toán 6 Chân trời sáng tạo tập 1
Đề bài
Viết các tập hợp sau bằng cách liệt kê các phần tử:
a) A= {a \( \in \) \(\mathbb{N}\)| 84 \( \vdots \)a; 180\( \vdots \) a và a > 6};
b) B = {b \( \in \)\(\mathbb{N}\)| b\( \vdots \)12; b\( \vdots \)15; b\( \vdots \)18 và 0 < b < 300}.
Phương pháp giải - Xem chi tiết
a) Tìm các ước chung của 84 và 180 mà lớn hơn 6
b) Tìm các bội chung của 12; 15 và 18 mà lớn hơn 0 nhỏ hơn 300
Lời giải chi tiết
a) Theo đề bài: 84 chia hết cho a và 180 chia hết cho a nên a là ƯC(84, 180) và a > 6.
Ta có: 84 = 22.3.7
180 = 22. 32.5
ƯCLN(84, 180) = 22. 3 = 12
=> a \( \in \) ƯC(84, 180) = Ư(12) = {1; 2; 3; 4; 6; 12}
Mà a > 6.
=> a = 12.
Vậy tập hợp A = {12}
b) Vì b chia hết cho 12, b chia hết cho 15, b chia hết cho 18 nên b là BC(12, 15, 18) và 0 < b <300
Ta có: \(12 = 2^2. 3; 15 = 3.5; 18 = 2.3^2\)
\(\Rightarrow BCNN(12, 15, 18) = 2^2 . 3^2.5 = 180\)
=> b\( \in \) BC(12, 15, 18) = B(180) = {0; 180; 360;...}
Mà 0 < b < 300
=> b = 180
Vậy tập hợp B = {180}.