- Trang chủ
- Lớp 6
- Toán học Lớp 6
- SBT Toán Lớp 6 Cánh diều
- GIẢI SBT TOÁN 6 TẬP 2 CÁNH DIỀU Cánh diều
- CHƯƠNG VI. Hình học phẳng - SBT
-
GIẢI SBT TOÁN 6 TẬP 1 CÁNH DIỀU
-
Chương 1: Số tự nhiên - SBT Cánh diều
- Bài 1: Tập hợp
- Bài 2: Tập hợp các số tự nhiên
- Bài 3: Phép cộng, phép trừ các số tự nhiên
- Bài 4: Phép nhân, phép chia các số tự nhiên
- Bài 5: Phép tính lũy thừa với số mũ tự nhiên
- Bài 6: Thứ tự thực hiện các phép tính
- Bài 7: Quan hệ chia hết. Tính chất chia hết
- Bài 8: Dấu hiệu chia hết cho 2, cho 5
- Bài 9: Dấu hiệu chia hết cho 3, cho 9
- Bài 10: Số nguyên tố
- Bài 11: Phân tích một số ra thừa số nguyên tố
- Bài 12: Ước chung và ước chung lớn nhất
- Bài 13: Bội chung và bội chung nhỏ nhất
- Bài tập cuối chương I
-
Chương 2: Số nguyên - SBT Cánh diều
-
Chương 3: Hình học trực quan
-
-
GIẢI SBT TOÁN 6 TẬP 2 CÁNH DIỀU
-
CHƯƠNG IV: Một số yếu tố thống kê và xác suất - SBT
-
CHƯƠNG V: Phân số và số thập phân - SBT
- Bài 1: Phân số với tử và mẫu là số nguyên
- Bài 2: So sánh các phân số. Hỗn số dương
- Bài 3. Phép cộng, phép trừ phân số
- Bài 4. Phép nhân, phép chia phân số
- Bài 5. Số thập phân
- Bài 6: Phép cộng, phép trừ số thập phân
- Bài 7: Phép nhân, phép chia số thập phân
- Bài 8. Ước lượng và làm tròn số
- Bài 9. Tỉ số. Tỉ số phần trăm
- Bài 10. Hai bài toán về phân số
- Bài tập cuối chương V
-
CHƯƠNG VI. Hình học phẳng - SBT
-
Giải bài 30 trang 95 sách bài tập Toán 6 – Cánh Diều Tập 2
Đề bài
a) Vẽ đoạn thẳng AB có độ dài 8 cm và trung điểm C của đoạn thẳng đó.
b) Vẽ các điểm P, Q lần lượt là trung điểm của các đoạn thẳng AC và CB
c) Tính độ dài các đoạn thẳng AP, QB và PQ.
Phương pháp giải - Xem chi tiết
Trung điểm O của đoạn thẳng AB là điểm nằm giữa A và B sao cho \(OA = OB\)
Nếu O là trung điểm của đoạn thẳng AB thì \(OA = OB = \frac{{AB}}{2}\)
Lời giải chi tiết
a) Đoạn thẳng AB có độ dài 8 cm và C là trung điểm của đoạn thẳng đó.
Vì C là trung điểm AB nên \(CA = CB = \frac{{AB}}{2} = \frac{8}{2}= 4\,cm\)
b) P, Q lần lượt là trung điểm của các đoạn thẳng AC và CB
c) Ta có:
P là trung điểm AC nên \(PA = PC = \frac{{AC}}{2} = \frac{4}{2}= 2\,cm\)
Q là trung điểm BC nên \(QB = QC = \frac{{BC}}{2} = \frac{4}{2}=2\,cm\)
Mà: \(PQ = PC + CQ\)(vì C nằm giữa P và Q)
\( \Rightarrow PQ = 2 + 2 = 4\,(cm)\)
Vậy \(AP = 2\,cm;\;QB = 2\,cm;\;PQ = 4\,cm\)