- Trang chủ
- Lớp 8
- Toán học Lớp 8
- SGK Toán Lớp 8 Cánh diều
- Toán 8 tập 1 Cánh diều
- Chương 1 Đa thức nhiều biến
-
Toán 8 tập 1
-
Toán 8 tập 2
-
Chương 6 Một số yếu tố thống kê và xác suất
- Bài 1. Thu thập và phân loại dữ liệu
- Bài 2. Mô tả và biểu diễn dữ liệu trên các bảng, biểu đồ
- Bài 3. Phân tích và xử lí dữ liệu thu được ở dạng bảng, biểu đồ
- Bài 4. Xác suất của biến cố ngẫu nhiên trong một số trò chơi đơn giản
- Bài 5. Xác suất thực nghiệm của một biến cố trong một số trò chơi đơn giản
- Bài tập cuối chương 6
-
Chương 7 Phương trình bậc nhất một ẩn
-
Chương 8 Tam giác đồng dạng. Hình đồng dạng
- Bài 1. Định lí Thalès trong tam giác
- Bài 2. Ứng dụng của định lí Thalès trong tam giác
- Bài 3. Đường trung bình của tam giác
- Bài 4. Tính chất đường phân giác của tam giác
- Bài 5. Tam giác đồng dạng
- Bài 6. Trường hợp đồng dạng thứ nhất của tam giác
- Bài 7. Trường hợp đồng dạng thứ hai của tam giác
- Bài 8. Trường hợp đồng dạng thứ ba của tam giác
- Bài 9. Hình đồng dạng
- Bài 10. Hình đồng dạng trong thực tiễn
- Bài tập cuối chương 8
-
Giải bài 4 trang 27 SGK Toán 8 tập 1 - Cánh diều
Đề bài
Chứng tỏ rằng:
\(a)M = {32^{2023}} - {32^{2021}}\) chia hết cho 31
b) \(N = {7^6} + {2.7^3} + {8^{2022}} + 1\) chia hết cho 8
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Phân tích M thành tích của các số trong đó có một số chia hết cho 31.
Phân tích N thành tích của các số trong đó có một số chia hết cho 8.
Lời giải chi tiết
\(\begin{array}{l}a)M = {32^{2023}} - {32^{2021}}\\M = {32^{2021}}\left( {{{32}^2} - 1} \right)\\M = {32^{2021}}.1023\end{array}\)
Vì \(1023 \vdots 31\) nên \(M = \left( {{{32}^{2021}}.1023} \right) \vdots 31\)
Vậy M chia hết cho 31.
\(\begin{array}{l}b)N = {7^6} + {2.7^3} + {8^{2022}} + 1\\N = {\left( {{7^3}} \right)^2} + {2.7^3} + 1 + {8^{2022}}\\N = {\left( {{7^3} + 1} \right)^2} + {8^{2022}}\\N = {\left( {344} \right)^2} + {8^{2022}}\\N = {\left( {8.43} \right)^2} + {8^{2022}}\\N = {8^2}\left( {{{43}^2} + {8^{2020}}} \right)\end{array}\)
Vì \({8^2} \vdots 8\) suy ra \(N = {8^2}\left( {{{43}^2} + {8^{2020}}} \right) \vdots 8\)
Vậy N chia hết cho 8