Giải bài 4.9 trang 8 sách bài tập toán 12 - Kết nối tri thức
Đề bài
Cho \(F\left( u \right)\) là một nguyên hàm của hàm số \(f\left( u \right)\) trên khoảng \(K\) và \(u\left( x \right),{\rm{ x}} \in {\rm{J}}\), là hàm số có đạo hàm liên tục, \(u\left( x \right) \in K\) với mọi \({\rm{x}} \in {\rm{J}}\). Tìm \(\int {f\left( {u\left( x \right)} \right)} \cdot u'\left( x \right)dx\).
Áp dụng: Tìm \(\int {{{\left( {2x + 1} \right)}^5}dx} \) và \(\int {\frac{1}{{\sqrt {2x + 1} }}dx} \).
Phương pháp giải - Xem chi tiết
Tìm \(\int {f\left( {u\left( x \right)} \right)} \cdot u'\left( x \right)dx\) bằng khái niệm nguyên hàm và đạo hàm của hàm hợp.
Áp dụng để tính các tích phân theo kết quả của \(\int {f\left( {u\left( x \right)} \right)} \cdot u'\left( x \right)dx\) đã tìm được.
Lời giải chi tiết
Do \(F' = f\) nên ta có đạo hàm hàm hợp của \(F\left( {u\left( x \right)} \right)\) là
\(\)\( \Leftrightarrow F'\left( {u\left( x \right)} \right) = f\left( {u\left( x \right)} \right) \cdot u'\left( x \right){\rm{ }}\left( 1 \right)\)
Lấy nguyên hàm hai vế của đẳng thức (1), ta được \(F\left( {u\left( x \right)} \right) + C = \int {f\left( {u\left( x \right)} \right) \cdot } u'\left( x \right)dx\).
Suy ra \(\int {f\left( {u\left( x \right)} \right) \cdot } u'\left( x \right)dx = F\left( {u\left( x \right)} \right) + C\).
Ta áp dụng để tìm các nguyên hàm sau:
\(\int {{{\left( {2x + 1} \right)}^5}dx} = \int {{{\left( {2x + 1} \right)}^5} \cdot {{\left( {2x + 1} \right)}^\prime } \cdot \frac{1}{2}dx} = \frac{1}{2}\int {{{\left( {2x + 1} \right)}^5} \cdot {{\left( {2x + 1} \right)}^\prime }dx} \)
\( = \frac{1}{2} \cdot \frac{{{{\left( {2x + 1} \right)}^6}}}{6} + C = \frac{{{{\left( {2x + 1} \right)}^6}}}{{12}} + C\);
\(\int {\frac{1}{{\sqrt {2x + 1} }}dx} = \int {\frac{1}{{\sqrt {2x + 1} }} \cdot {{\left( {2x + 1} \right)}^\prime } \cdot \frac{1}{2}dx} = \frac{1}{2} \cdot 2 \cdot \sqrt {2x + 1} + C = \sqrt {2x + 1} + C\).