- Trang chủ
- Lớp 8
- Toán học Lớp 8
- SGK Toán Lớp 8 Cánh diều
- Toán 8 tập 2 Cánh diều
- Chương 8 Tam giác đồng dạng. Hình đồng dạng
-
Toán 8 tập 1
-
Toán 8 tập 2
-
Chương 6 Một số yếu tố thống kê và xác suất
- Bài 1. Thu thập và phân loại dữ liệu
- Bài 2. Mô tả và biểu diễn dữ liệu trên các bảng, biểu đồ
- Bài 3. Phân tích và xử lí dữ liệu thu được ở dạng bảng, biểu đồ
- Bài 4. Xác suất của biến cố ngẫu nhiên trong một số trò chơi đơn giản
- Bài 5. Xác suất thực nghiệm của một biến cố trong một số trò chơi đơn giản
- Bài tập cuối chương 6
-
Chương 7 Phương trình bậc nhất một ẩn
-
Chương 8 Tam giác đồng dạng. Hình đồng dạng
- Bài 1. Định lí Thalès trong tam giác
- Bài 2. Ứng dụng của định lí Thalès trong tam giác
- Bài 3. Đường trung bình của tam giác
- Bài 4. Tính chất đường phân giác của tam giác
- Bài 5. Tam giác đồng dạng
- Bài 6. Trường hợp đồng dạng thứ nhất của tam giác
- Bài 7. Trường hợp đồng dạng thứ hai của tam giác
- Bài 8. Trường hợp đồng dạng thứ ba của tam giác
- Bài 9. Hình đồng dạng
- Bài 10. Hình đồng dạng trong thực tiễn
- Bài tập cuối chương 8
-
Giải bài 5 trang 57 SGK Toán 8 – Cánh diều
Đề bài
Cho đoạn thẳng AB. Hãy trình bày cách chia đoạn thẳng AB thành ba đoạn thẳng bằng nhau mà không cần dùng thước đo.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Lấy thêm điểm và sử dụng định lý Thales để chia đoạn thẳng thành ba phần bằng nhau.
Lời giải chi tiết
Lấy một điểm P nằm ngoài đoạn thẳng AB và nối AP, BP.
Trên đoạn thẳng AP lấy hai điểm M và N sao cho AM = MN = NP.
Khi đó \(\frac{{AM}}{{AP}} = \frac{1}{3};\,\,\frac{{AN}}{{AP}} = \frac{2}{3}\).
Kẻ các đoạn thẳng \(MC\parallel PB,\,\,ND\parallel PB\) với \(C,\,\,D \in AB\).
Theo hệ quả của định lý Thales trong tam giác APB thì \(\frac{{AM}}{{AP}} = \frac{{AC}}{{AB}} = \frac{1}{3}\) và \(\frac{{AN}}{{AP}} = \frac{{AD}}{{AB}} = \frac{2}{3}\).
Khi đó AC = CD = DB = \(\frac{1}{3}\)AB.
Vậy ta đã chia đoạn thẳng AB thành 3 phần bằng nhau mà không cần dùng thước đo.