Giải bài 6 trang 69 SGK Toán 8 – Cánh diều

Đề bài

Cho tứ giác ABCD với các tia phân giác của các góc CAD và CBD cùng đi qua điểm E thuộc cạnh CD (Hình 45). Chứng minh \(AD.BC{\rm{ }} = {\rm{ }}AC.BD\).

1_1.png 

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng định lý đường trung bình để chứng minh theo yêu cầu đề bài.

Lời giải chi tiết

1_2.png

Xét tam giác ACD với đường phân giác AE, ta có:

\(\frac{{ED}}{{EC}} = \frac{{AD}}{{AC}}\,\,\left( 1 \right)\) (Tính chất đường phân giác trong tam giác)

Xét tam giác BCD với đường phân giác BE, ta có:

\(\frac{{ED}}{{EC}} = \frac{{BD}}{{BC}}\,\,\left( 2 \right)\) (Tính chất đường phân giác trong tam giác)

Từ (1) và (2) ta có: \(\frac{{AD}}{{AC}} = \frac{{BD}}{{BC}} \Rightarrow AD.BC = AC.BD\)