- Trang chủ
- Lớp 7
- Toán học Lớp 7
- SGK Toán Lớp 7 Chân trời sáng tạo
- Toán 7 tập 2 Chân trời sáng tạo
- Chương 8. Tam giác
-
GIẢI SGK TOÁN 8 CHÂN TRỜI SÁNG TẠO - MỚI NHẤT
-
Toán 7 tập 1
-
Chương 1. Số hữu tỉ
-
Chương 2. Số thực
-
Chương 3. Các hình khối trong thực tiễn
- Bài 1. Hình hộp chữ nhật. Hình lập phương
- Bài 2. Diện tích xung quanh và thể tích của hình hộp chữ nhật, hình lập phương
- Bài 3. Hình lăng trụ đứng tam giác. Hình lăng trụ đứng tứ giác
- Bài 4. Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác
- Bài 5. Hoạt động thực hành và trải nghiệm: Các bài toán về đo đạc và gấp hình
- Bài tập cuối chương 3
-
Chương 4. Góc và đường thẳng song song
-
Chương 5. Một số yếu tố thống kê
-
-
Toán 7 tập 2
-
Chương 6. Các đại lượng tỉ lệ
-
Chương 7. Biểu thức đại số
-
Chương 8. Tam giác
- Bài 1. Góc và cạnh của một tam giác
- Bài 2. Tam giác bằng nhau
- Bài 3. Tam giác cân
- Bài 4. Đường vuông góc và đường xiên
- Bài 5. Đường trung trực của một đoạn thẳng
- Bài 6. Tính chất ba đường trung trực của tam giác
- Bài 7. Tính chất ba đường trung tuyến của tam giác
- Bài 8. Tính chất ba đường cao của tam giác
- Bài 9. Tính chất ba đường phân giác của tam giác
- Bài 10. Hoạt động thực hành và trải nghiệm: Làm giàn hoa tam giác để trang trí lớp học
- Bài tập cuối chương 8
-
Chương 9. Một số yếu tố xác suất
-
Giải bài 6 trang 76 SGK Toán 7 tập 2 - Chân trời sáng tạo
Đề bài
Cho tam giác ABC cân tại A có BD và CE là hai đường trung tuyến cắt nhau tại F (Hình 10). Biết BE = 9 cm, tính độ dài đoạn thẳng DF.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
- Ta chứng minh F là trọng tâm tam giác ABC
- Sau đó chứng minh CD = BE
- Áp dụng định lí về trọng tâm tam giác ta tính các đoạn DF, EF
Lời giải chi tiết
Vì BE, CD là 2 trung tuyến của tam giác ABC nên E, D lần lượt là trung tuyến của AB và AC
\( \Rightarrow AD = AE = \dfrac{1}{2}AB = \dfrac{1}{2}AC\)
Xét tam giác ADC và tam giác AEB có :
AD = AE (gt)
\(\widehat{A}\) chung
AB = AC (do \(\Delta ABC\) cân tại A )
\( \Rightarrow \Delta ADC = \Delta AEB(c - g - c)\)
\( \Rightarrow BE = CD\)(cạnh tương ứng)
Tam giác ABC có F là giao điểm của 2 trung tuyến BE, CD nên F là trọng tâm tam giác ABC
\( \Rightarrow CF = BF = \dfrac{2}{3}BE = \dfrac{2}{3}CD\) ( định lí về trung tuyến đi qua trọng tâm tam giác )
\( \Rightarrow \dfrac{1}{3}BE = \dfrac{1}{3}CD \Rightarrow DF = FE = \dfrac{1}{3}.9cm = 3cm\)
\( \Rightarrow \) DF = 3 cm