- Trang chủ
- Lớp 8
- Toán học Lớp 8
- SGK Toán Lớp 8 Cánh diều
- Toán 8 tập 2 Cánh diều
- Chương 8 Tam giác đồng dạng. Hình đồng dạng
-
Toán 8 tập 1
-
Toán 8 tập 2
-
Chương 6 Một số yếu tố thống kê và xác suất
- Bài 1. Thu thập và phân loại dữ liệu
- Bài 2. Mô tả và biểu diễn dữ liệu trên các bảng, biểu đồ
- Bài 3. Phân tích và xử lí dữ liệu thu được ở dạng bảng, biểu đồ
- Bài 4. Xác suất của biến cố ngẫu nhiên trong một số trò chơi đơn giản
- Bài 5. Xác suất thực nghiệm của một biến cố trong một số trò chơi đơn giản
- Bài tập cuối chương 6
-
Chương 7 Phương trình bậc nhất một ẩn
-
Chương 8 Tam giác đồng dạng. Hình đồng dạng
- Bài 1. Định lí Thalès trong tam giác
- Bài 2. Ứng dụng của định lí Thalès trong tam giác
- Bài 3. Đường trung bình của tam giác
- Bài 4. Tính chất đường phân giác của tam giác
- Bài 5. Tam giác đồng dạng
- Bài 6. Trường hợp đồng dạng thứ nhất của tam giác
- Bài 7. Trường hợp đồng dạng thứ hai của tam giác
- Bài 8. Trường hợp đồng dạng thứ ba của tam giác
- Bài 9. Hình đồng dạng
- Bài 10. Hình đồng dạng trong thực tiễn
- Bài tập cuối chương 8
-
Giải bài 6 trang 85 SGK Toán 8 – Cánh diều
Đề bài
Trong Hình 89, bạn Minh dùng một dụng cụ để đo chiều cao của cây. Cho biết khoảng cách từ mắt bạn Minh đến cây và đến mặt đất lần lượt là \(AH = 2,8m\) và \(AK = 1,6m\). Em hãy tính chiều cao của cây.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Độ cao của cây là độ dài của đoạn thẳng BC.
Lời giải chi tiết
Xét tứ giác AHBK có \(\widehat H = \widehat B = \widehat K = 90^\circ \) nên AHBK là hình chữ nhật.
\( \Rightarrow AK = BH = 1,6m\)
Xét tam giác ABH vuông tại H có:
\(A{H^2} + H{B^2} = A{B^2}\) (Định lý Pytago)
\(\begin{array}{l} \Rightarrow 2,{8^2} + 1,{6^2} = A{B^2}\\ \Rightarrow A{B^2} = 10,4\\ \Rightarrow AB = \frac{{2\sqrt {65} }}{5}\end{array}\)
Xét tam giác ABC và tam giác HBA có:
\(\widehat {BAC} = \widehat {BHA} = 90^\circ \) và \(\widehat C\) chung
\( \Rightarrow \Delta ABC \backsim \Delta HBA\) (g-g)
\( \Rightarrow \frac{{BC}}{{BA}} = \frac{{AB}}{{HB}} \Leftrightarrow BC = A{B^2}:HB = {\left( {\frac{{2\sqrt {65} }}{5}} \right)^2}:1,6 = 6,5\)
Vậy cây cao 6,5m.