- Trang chủ
- Lớp 7
- Toán học Lớp 7
- SGK Toán Lớp 7 Chân trời sáng tạo
- Toán 7 tập 1 Chân trời sáng tạo
- Chương 4. Góc và đường thẳng song song
-
GIẢI SGK TOÁN 8 CHÂN TRỜI SÁNG TẠO - MỚI NHẤT
-
Toán 7 tập 1
-
Chương 1. Số hữu tỉ
-
Chương 2. Số thực
-
Chương 3. Các hình khối trong thực tiễn
- Bài 1. Hình hộp chữ nhật. Hình lập phương
- Bài 2. Diện tích xung quanh và thể tích của hình hộp chữ nhật, hình lập phương
- Bài 3. Hình lăng trụ đứng tam giác. Hình lăng trụ đứng tứ giác
- Bài 4. Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác
- Bài 5. Hoạt động thực hành và trải nghiệm: Các bài toán về đo đạc và gấp hình
- Bài tập cuối chương 3
-
Chương 4. Góc và đường thẳng song song
-
Chương 5. Một số yếu tố thống kê
-
-
Toán 7 tập 2
-
Chương 6. Các đại lượng tỉ lệ
-
Chương 7. Biểu thức đại số
-
Chương 8. Tam giác
- Bài 1. Góc và cạnh của một tam giác
- Bài 2. Tam giác bằng nhau
- Bài 3. Tam giác cân
- Bài 4. Đường vuông góc và đường xiên
- Bài 5. Đường trung trực của một đoạn thẳng
- Bài 6. Tính chất ba đường trung trực của tam giác
- Bài 7. Tính chất ba đường trung tuyến của tam giác
- Bài 8. Tính chất ba đường cao của tam giác
- Bài 9. Tính chất ba đường phân giác của tam giác
- Bài 10. Hoạt động thực hành và trải nghiệm: Làm giàn hoa tam giác để trang trí lớp học
- Bài tập cuối chương 8
-
Chương 9. Một số yếu tố xác suất
-
Giải bài 6 trang 87 SGK Toán 7 tập 1 - Chân trời sáng tạo
Đề bài
Cho Hình 5 có \(\widehat {{B_1}} = 130^\circ \). Số đo của \(\widehat {{A_1}}\) là bao nhiêu?
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
*Hai đường thẳng cùng vuông góc với 1 đường thẳng thì song song với nhau
*Sử dụng tính chất của 2 đường thẳng song song:
Một đường thẳng cắt hai đường thẳng song song thì:
+ 2 góc so le trong bằng nhau
+ 2 góc đồng vị bằng nhau
*Tổng các góc kề bù là 180 độ
Lời giải chi tiết
Vì a \( \bot \) c, b \( \bot \) c nên a // b ( cùng vuông góc với c)
Ta có: \(\widehat {{B_1}} + \widehat {{B_2}} = 180^\circ \) ( 2 góc kề bù) nên \(130^\circ + \widehat {{B_2}} = 180^\circ\) suy ra \(\widehat {{B_2}} = 180^\circ - 130^\circ = 50^\circ \)
Vì a // b nên \(\widehat {{A_1}} = \widehat {{B_2}}\) (2 góc đồng vị) nên \(\widehat {{A_1}} = 50^\circ \)