Giải bài 6.12 trang 47 SGK Toán 8 - Cùng khám phá

Đề bài

Cho tứ giác \(ABCD\) có \(AB = AD\) . Đường phân giác của góc \(BAC\) cắt \(BC\) tại điểm \(E\) đường phân giác của góc \(CAD\) cắt \(CD\) tại \(F\) . Chứng minh rằng \({\rm{EF}}\) song song với \(BD.\) 

Phương pháp giải - Xem chi tiết

Dựa vào tính chất đường phân giác của một tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy.

Lời giải chi tiết

1_16.png

Ta có:

 \(\frac{{DF}}{{FC}} = \frac{{AD}}{{AC}}\) (AF là đường phân giác)

 \(\frac{{CE}}{{EB}} = \frac{{AC}}{{AB}}\) (AE là đường phân giác)

=> \(\frac{{DF}}{{FC}} = \frac{{BE}}{{EC}}\)

Áp dụng định lý thales suy ra \(BD//EF\)