Giải bài 6.15 trang 14 SGK Toán 8 tập 2 - Kết nối tri thức

Đề bài

Quy đồng mẫu thức các phần thức sau:

\(\)\(a)\frac{1}{{4{\rm{x}}{y^2}}}\)và \(\frac{5}{{6{{\rm{x}}^2}y}}\);

\(b)\frac{9}{{4{{\rm{x}}^2} - 36}}\)và \(\frac{1}{{{x^2} + 6{\rm{x}} + 9}}\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Tìm mẫu thức chung cả hai phân thức và nhân tủ phụ của mỗi phân thức. sau đó nhân cả tử và mẫu của phân thức đó với nhân tử phụ.

Lời giải chi tiết

a) \(\frac{1}{{4{{x}}{y^2}}}\)và \(\frac{5}{{6{{{x}}^2}y}}\)

MTC là: \(12{{{x}}^2}{y^2}\).

Nhân tử phụ của phân thức \(\frac{1}{{4{{x}}{y^2}}}\) là 3x

Nhân tử phụ của phân thức \(\frac{5}{{6{{{x}}^2}y}}\) là 2y

Khi đó: \(\frac{1}{{4{{x}}{y^2}}} = \frac{{1.3{{x}}}}{{4{{x}}{y^2}.3{{x}}}} = \frac{{3{{x}}}}{{12{{{x}}^2}{y^2}}}\)

\(\frac{5}{{6{{{x}}^2}y}} = \frac{{5.2y}}{{6{{{x}}^2}y.2y}} = \frac{{10y}}{{12{{{x}}^2}{y^2}}}\)

b) \(\frac{9}{{4{{{x}}^2} - 36}}\) và \(\frac{1}{{{x^2} + 6{{x}} + 9}}\).

Ta có:

\(\begin{array}{l}4{{{x}}^2} - 36 = 4({x^2} - 9) = 4(x - 3)(x + 3)\\{x^2} + 6{{x}} + 9 = {(x + 3)^2}\end{array}\)

MTC là: \(4(x - 3){(x + 3)^2}\)

Nhân tử phụ của phân thức \(\frac{9}{{4{{{x}}^2} - 36}}\) là: x + 3

Nhân tử phụ của phân thức \(\frac{1}{{{x^2} + 6{{x}} + 9}}\) là: 4(x – 3)

Khi đó:

\(\begin{array}{l}\frac{9}{{4{{{x}}^2} - 36}} = \frac{9}{{4({x^2} - 9)}} = \frac{9}{{4(x - 3)(x + 3)}} = \frac{{9(x + 3)}}{{4(x - 3){{(x + 3)}^2}}}\\\frac{1}{{{x^2} + 6{{x}} + 9}} = \frac{1}{{{{(x + 3)}^2}}} = \frac{{4(x - 3)}}{{4(x - 3){{(x + 3)}^2}}}\end{array}\)