Giải bài 7 trang 21 sách bài tập toán 12 - Chân trời sáng tạo

Đề bài

Cho \(D\) là hình phẳng giới hạn bởi đồ thị của hàm số \(y = 2{x^3}\), trục hoành và hai đường thẳng \(x =  - 1,x = 1\).

a) Tính diện tích của \(D\).

b) Tính thể tích của khối tròn xoay tạo thành khi quay \(D\) quanh trục \(Ox\).

Phương pháp giải - Xem chi tiết

‒ Sử dụng công thức: Tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a,x = b\) là: \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \).

‒ Sử dụng công thức: Tính thể tích khối tròn xoay khi xoay hình phẳng giới hạn bởi đồ thị của hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a,x = b\) quay quanh trục \(Ox\) là: \(V = \pi \int\limits_a^b {{{\left[ {f\left( x \right)} \right]}^2}dx} \).

Lời giải chi tiết

a) \(S = \int\limits_{ - 1}^1 {\left| {2{{\rm{x}}^3}} \right|dx}  = \int\limits_{ - 1}^0 {\left| {2{{\rm{x}}^3}} \right|dx}  + \int\limits_0^1 {\left| {2{{\rm{x}}^3}} \right|dx}  = \left| {\int\limits_{ - 1}^0 {2{{\rm{x}}^3}dx} } \right| + \left| {\int\limits_0^1 {2{{\rm{x}}^3}dx} } \right| = \left| {\left. {\frac{{{x^4}}}{2}} \right|_{ - 1}^0} \right| + \left| {\left. {\frac{{{x^4}}}{2}} \right|_0^1} \right| = \frac{1}{2} + \frac{1}{2} = 1\).

b) \(V = \pi \int\limits_{ - 1}^1 {{{\left( {2{{\rm{x}}^3}} \right)}^2}dx}  = \pi \int\limits_{ - 1}^1 {4{{\rm{x}}^6}dx}  = \left. {4\pi .\frac{{{x^7}}}{7}} \right|_{ - 1}^1 = \frac{{8\pi }}{7}\).