- Trang chủ
- Lớp 7
- Toán học Lớp 7
- SGK Toán Lớp 7 Chân trời sáng tạo
- Toán 7 tập 2 Chân trời sáng tạo
- Chương 8. Tam giác
-
GIẢI SGK TOÁN 8 CHÂN TRỜI SÁNG TẠO - MỚI NHẤT
-
Toán 7 tập 1
-
Chương 1. Số hữu tỉ
-
Chương 2. Số thực
-
Chương 3. Các hình khối trong thực tiễn
- Bài 1. Hình hộp chữ nhật. Hình lập phương
- Bài 2. Diện tích xung quanh và thể tích của hình hộp chữ nhật, hình lập phương
- Bài 3. Hình lăng trụ đứng tam giác. Hình lăng trụ đứng tứ giác
- Bài 4. Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác
- Bài 5. Hoạt động thực hành và trải nghiệm: Các bài toán về đo đạc và gấp hình
- Bài tập cuối chương 3
-
Chương 4. Góc và đường thẳng song song
-
Chương 5. Một số yếu tố thống kê
-
-
Toán 7 tập 2
-
Chương 6. Các đại lượng tỉ lệ
-
Chương 7. Biểu thức đại số
-
Chương 8. Tam giác
- Bài 1. Góc và cạnh của một tam giác
- Bài 2. Tam giác bằng nhau
- Bài 3. Tam giác cân
- Bài 4. Đường vuông góc và đường xiên
- Bài 5. Đường trung trực của một đoạn thẳng
- Bài 6. Tính chất ba đường trung trực của tam giác
- Bài 7. Tính chất ba đường trung tuyến của tam giác
- Bài 8. Tính chất ba đường cao của tam giác
- Bài 9. Tính chất ba đường phân giác của tam giác
- Bài 10. Hoạt động thực hành và trải nghiệm: Làm giàn hoa tam giác để trang trí lớp học
- Bài tập cuối chương 8
-
Chương 9. Một số yếu tố xác suất
-
Giải Bài 8 trang 84 SGK Toán 7 tập 2 - Chân trời sáng tạo
Đề bài
Ở Hình 1, cho biết AE = AF và \(\widehat {ABC} = \widehat {ACB}\). Chứng minh AH là đường trung trực của BC.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Ta chứng minh A và H cùng thuộc đường trung trực của đoạn BC thông qua chứng minh chúng cách đều 2 đầu mút của đoạn BC.
Lời giải chi tiết
Theo giả thiết ta có tam giác ABC cân tại A do có 2 góc đáy bằng nhau
\( \Rightarrow \)A cách đều 2 đều B, C
\( \Rightarrow \) A thuộc trung trực đoạn thẳng BC (1) (Tính chất điểm cách đều 2 đầu mút đoạn thẳng)
Xét \(\Delta \)AEC và \(\Delta \)AFB ta có :
AE = AF
Góc A chung
AC = AB
\( \Rightarrow \Delta AEC = \Delta AFB\)(c-g-c)
\( \Rightarrow \widehat {ECA} = \widehat {FBA}\)(góc tương ứng)
Ta có: \(\widehat {ABC} = \widehat {ABF} + \widehat {FBC}\)
\(\widehat {ACB} = \widehat {ACE} + \widehat {ECB}\)
Mà \(\widehat {ACB} = \widehat {ABC}\)(giả thiết) và \(\widehat {ECA} = \widehat {FBA}\)(chứng minh trên)
\( \Rightarrow \widehat {ECB} = \widehat {FBC}\)\( \Rightarrow \)\(\Delta \)HBC cân tại H do có 2 góc đáy bằng nhau
\( \Rightarrow \) H cách đều BC \( \Rightarrow \) H thuộc trung trực BC (2) (Tính chất điểm cách đều 2 đầu mút đoạn thẳng)
Từ (1) và (2) \( \Rightarrow \) AH là trung trực của BC