Giải bài 9 trang 11 sách bài tập toán 12 - Chân trời sáng tạo

Đề bài

Tìm \(m\) để phương trình \(\frac{{{x^2} + x + 4}}{{x + 1}} = m\) có hai nghiệm phân biệt.

Phương pháp giải - Xem chi tiết

Xét hàm số \(y = \frac{{{x^2} + x + 4}}{{x + 1}}\), lập bảng biến thiên, xét sự tương giao của đồ thị hàm số với đường thẳng \(y = m\) và kết luận.

Lời giải chi tiết

Đặt \(y = \frac{{{x^2} + x + 4}}{{x + 1}}\).

Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\).

Ta có

\(y' = \frac{{{{\left( {{x^2} + x + 4} \right)}^\prime }\left( {x + 1} \right) - \left( {{x^2} + x + 4} \right){{\left( {x + 1} \right)}^\prime }}}{{{{\left( {x + 1} \right)}^2}}} = \frac{{\left( {2{\rm{x}} + 1} \right)\left( {x + 1} \right) - \left( {{x^2} + x + 4} \right)}}{{{{\left( {x + 1} \right)}^2}}} = \frac{{{x^2} + 2{\rm{x}} - 3}}{{{{\left( {x + 1} \right)}^2}}}\)

\(y' = 0 \Leftrightarrow x = 1\) hoặc \({\rm{x}} =  - 3\).

Bảng biến thiên:

16.png

Từ bảng biển thiên, ta thấy đường thẳng \(y = m\) giao với đồ thị của hàm số tại hai nghiệm phân biệt khi \(m > 3\) hoặc \(m <  - 5\). Do đó phương trình \(\frac{{{x^2} + x + 4}}{{x + 1}} = m\) có hai nghiệm phân biệt khi \(m > 3\) hoặc \(m <  - 5\).