Giải mục 2 trang 34,35,36 SGK Toán 12 tập 2 - Cánh diều

Lựa chọn câu để xem lời giải nhanh hơn

HĐ3

Trả lời câu hỏi Hoạt động 3 trang 34 SGK Toán 12 Cánh diều

Cắt khối lập phương có cạnh bằng 1 bởi một mặt phẳng tùy ý vuông góc với trục Ox tại x, với ta nhận được hình phẳng có diện tích là S(x) (Hình 17)

3_2.jpg

a) Tính S(x)

b) So sánh thể tích khối lập phương đó với \(\int\limits_0^1 {S(x)dx} \)

Phương pháp giải:

Sử dụng công thức tính diện tích hình vuông, thể tích hình lập phương và tích phân

Lời giải chi tiết:

a)  S(x) = 1

b) Thể tích khối lập phương V = 1

\(\int\limits_0^1 {S(x)dx}  = \int\limits_0^1 {1dx}  = 1\)

Vậy thể tích khối lập phương đó = \(\int\limits_0^1 {S(x)dx} \)

HĐ4

Trả lời câu hỏi Hoạt động 4 trang 37 SGK Toán 12 Cánh diều

Xét hình tròn tâm O, bán kính r (Hình 24). Nửa hình tròn đó là hình phẳng giới hạn bởi trục Ox và đồ thị hàm số y = f(x)

a) Tìm hàm số y = f(x)

b) Quay nửa hình tròn đó quanh trục hoành, ta nhận được hình cầu tâm O bán kính r (Hình 25). Xét điểm M(x;f(x)) \(( - r \le x \le r)\) nằm trên nửa đường tròn tâm O bán kính r. Gọi H(x;0) là hình chiếu của điểm M trên trục Ox. Khi quay nửa hình tròn quanh trục hoành, đoạn thẳng HM tạo nên một hình tròn tâm H bán kính f(x)

Tính diện tích S(x) của hình tròn đó theo f(x)

Từ đó, sử dụng công thức tính thể tích vật thể, hãy tính thể tích V của hình cầu tâm O bán kính r

3_3.jpg

Phương pháp giải:

a) Tìm hàm số y = f(x) thông qua phương trình nửa đường tròn

b) Sử dụng công thức tính thể tích hình cầu

Lời giải chi tiết:

a) Hàm số y = f(x) chính là phương trình của nửa đường tròn có tâm O, bán kính r

\( \Rightarrow y = f(x) = \sqrt {{r^2} - {x^2}} \)

b) \(S(x) = \pi {f^2}(x)\)

\(V = \frac{{4\pi {r^3}}}{3}\)