-
Chương 1. Đa thức
-
Chương 2. Hằng đẳng thức đáng nhớ và ứng dụng
-
Các hằng đẳng thức đáng nhớ
-
Phân tích đa thức thành nhân tử
- 1. Phân tích đa thức thành nhân tử là gì? Phương pháp đặt nhân tử chung là gì? Phân tích đa thức thành nhân tử như thế nào?
- 2. Phân tích đa thức thành nhân tử là gì? Phương pháp sử dụng hằng đẳng thức là gì? Phân tích đa thức thành nhân tử bằng cách sử dụng hằng đẳng thức như thế nào?
- 3. Phân tích đa thức thành nhân tử là gì? Phương pháp nhóm hạng tử là gì? Phân tích đa thức thành nhân tử bằng cách nhóm hạng tử như thế nào?
-
-
Chương 3. Tứ giác
-
Chương 4. Định lí Thalès
-
Chương 5. Dữ liệu và biểu đồ
-
Chương 6. Phân thức đại số
-
Chương 7. Phương trình bậc nhất và hàm số bậc nhất
-
Chương 8. Mở đầu về tính xác suất của biến cố
-
Chương 9. Tam giác đồng dạng
-
Chương 10. Một số hình khối trong thực tiễn
Khái niệm đa thức thu gọn
1. Lý thuyết
- Khái niệm:
+ Đa thức thu gọn là đa thức không chứa hai hạng tử nào đồng dạng.
+ Bậc của đa thức là bậc của hạng tử có bậc cao nhất trong dạng thu gọn của đa thức.
- Chú ý:
+ Một số khác 0 tùy ý được coi là một đa thức bậc 0.
+ Số 0 cũng là một đa thức, gọi là đa thức không. Nó không có bậc xác định.
- Thu gọn đa thức:
+ Biến đổi một đa thức thành đa thức thu gọn gọi là thu gọn đa thức đó.
+ Để thu gọn một đa thức, ta nhóm các hạng tử đồng dạng với nhau và cộng các hạng tử đồng dạng đó với nhau.
- Tính giá trị của đa thức:
Để tính giá trị của một đa thức tại những giá trị cho trước của các biến, ta thay những giá trị cho trước đó vào biểu thức xác định đa thức rồi thực hiện phép tính.
2. Ví dụ minh họa
Thu gọn đa thức \(P = \frac{1}{3}{x^2}y + x{y^2} - xy + \frac{1}{2}x{y^2} - 5xy - \frac{1}{3}{x^2}y\) như sau:
\(\begin{array}{l}P = \frac{1}{3}{x^2}y + x{y^2} - xy + \frac{1}{2}x{y^2} - 5xy - \frac{1}{3}{x^2}y\\ = \left( {\frac{1}{3}{x^2}y - \frac{1}{3}{x^2}y} \right) + \left( {x{y^2} + \frac{1}{2}x{y^2}} \right) + \left( { - xy - 5xy} \right)\\ = \frac{3}{2}x{y^2} - 6xy\end{array}\)
Đa thức \(\frac{3}{2}x{y^2} - 6xy\) có hai đơn thức \(\frac{3}{2}x{y^2}\) và \( - 6xy\) với bậc lần lượt là 3 và 2 nên bậc của đa thức \(\frac{3}{2}x{y^2} - 6xy\) là 3.
Giá trị của đa thức \(\frac{3}{2}x{y^2} - 6xy\) tại \(x{\rm{ }} = {\rm{ }}2;{\rm{ }}y{\rm{ }} = {\rm{ }}1\) là: \(\frac{3}{2}{2.1^2} - 6.2.1 = 3 - 12 = - 9\)