- Trang chủ
- Lớp 8
- Toán học Lớp 8
- Lý thuyết Toán 8 Lớp 8
- Chương 7. Phương trình bậc nhất và hàm số bậc nhất
- Khái niệm hàm số và đồ thị của hàm số
-
Chương 1. Đa thức
-
Chương 2. Hằng đẳng thức đáng nhớ và ứng dụng
-
Các hằng đẳng thức đáng nhớ
-
Phân tích đa thức thành nhân tử
- 1. Phân tích đa thức thành nhân tử là gì? Phương pháp đặt nhân tử chung là gì? Phân tích đa thức thành nhân tử như thế nào?
- 2. Phân tích đa thức thành nhân tử là gì? Phương pháp sử dụng hằng đẳng thức là gì? Phân tích đa thức thành nhân tử bằng cách sử dụng hằng đẳng thức như thế nào?
- 3. Phân tích đa thức thành nhân tử là gì? Phương pháp nhóm hạng tử là gì? Phân tích đa thức thành nhân tử bằng cách nhóm hạng tử như thế nào?
-
-
Chương 3. Tứ giác
-
Chương 4. Định lí Thalès
-
Chương 5. Dữ liệu và biểu đồ
-
Chương 6. Phân thức đại số
-
Chương 7. Phương trình bậc nhất và hàm số bậc nhất
-
Chương 8. Mở đầu về tính xác suất của biến cố
-
Chương 9. Tam giác đồng dạng
-
Chương 10. Một số hình khối trong thực tiễn
Khái niệm hàm số
1. Lý thuyết
- Khái niệm hàm số: Nếu đại lượng \(y\) phụ thuộc vào đại lượng thay đổi \(x\) sao cho với mỗi giá trị của \(x\) ta luôn xác định được chỉ một giá trị tương ứng của \(y\) thì \(y\) được gọi là hàm số của \(x\) và \(x\) gọi là biến số.
- Cách cho một hàm số:
+ Nếu \(x\) thay đổi mà \(y\) không đổi thì \(y\) gọi là hàm hằng.
+ Hàm số có thể được cho bằng bảng, bằng công thức.
+ Khi \(y\) là hàm số của \(x\) ta có thể viết \(y = f(x),\,\,y = g(x),....\,\,\)
- Giá trị của hàm số: Cho hàm số y = f(x) xác định tại x = a. Giá trị tương ứng của hàm số f(x) khi x = a được gọi là giá trị của hàm số y = f(x) tại x = a, kí hiệu f (a).
Bảng giá trị của hàm số y = f(x)
x | a | b | c | ... | ... |
y = f(x) | f(a) | f(b) | f(c) | ... | ... |
2. Ví dụ minh họa
Ví dụ về Hàm số: Ta có bảng nhiệt độ dự báo ở Thủ đô Hà Nội ngày 25/5/2023.
t(h) | 10 | 11 | 12 | 13 |
T(0C) | 32 | 33 | 34 | 34 |
Ta có nhiệt độ T là hàm số của thời điểm t vì mỗi giá trị của t chỉ xác định đúng một giá trị của T.
Ngược lại, thời điểm t không phải là hàm số của nhiệt độ T, vì nhiệt độ T = 340C tương ứng với hai thời điểm khác nhau t = 12 và t = 13.
Ví dụ Giá trị của hàm số: Cho hàm số y = f(x) = x + 3.
f(-2) = -2 + 3 = 1; f(0) = 0 + 3 = 3
Ví dụ Giá trị của hàm số: Cho hàm số y = f(x) = -2x + 1.
a. Tính f(10); f(-10)
b. Lập bảng giá trị của hàm số với x lần lượt bằng -2; -1; 0; 1; 2
Giải
a. f(10) = -2.10 + 1 = -20 + 1 = -19
f(-10) = -2.(-10) + 1 = 20 + 1 = 21
b. Bảng giá trị của hàm số với x lần lượt bằng -2; -1; 0; 1; 2 là:
x | -2 | -1 | 0 | 1 | 2 |
y = f(x) = -2x + 1 | 5 | 3 | 1 | -1 | -3 |