- Trang chủ
- Lớp 6
- Toán học Lớp 6
- SGK Toán Lớp 6 Chân trời sáng tạo
- Toán 6 tập 1 Chân trời sáng tạo
- CHƯƠNG 1.SỐ TỰ NHIÊN
-
Toán 6 tập 1
-
CHƯƠNG 1.SỐ TỰ NHIÊN
- Bài 1. Tập hợp. Phần tử của tập hợp
- Bài 2. Tập hợp số tự nhiên. Ghi số tự nhiên
- Bài 3. Các phép tính trong tập hợp số tự nhiên
- Bài 4. Lũy thừa với số mũ tự nhiên
- Bài 5. Thứ tự thực hiện các phép tính
- Bài 6. Chia hết và chia có dư. Tính chất chia hết của một tổng
- Bài 7. Dấu hiệu chia hết cho 2, cho 5
- Bài 8. Dấu hiệu chia hết cho 3, cho 9
- Bài 9. Ước và bội
- Bài 10. Số nguyên tố. Hợp số. Phân tích một số ra thừa số nguyên tố
- Bài 11. Hoạt động thực hành và trải nghiệm
- Bài 12. Ước chung. Ước chung lớn nhất
- Bài 13. Bội chung. Bội chung nhỏ nhất
- Bài 14. Hoạt động thực hành và trải nghiệm
- Bài tập cuối chương 1
-
CHƯƠNG 2. SỐ NGUYÊN
-
-
Toán 6 tập 2
-
GIẢI TOÁN 6 MỘT SỐ YẾU TỐ THỐNG KÊ VÀ XÁC XUẤT TẬP 1 CHÂN TRỜI SÁNG TẠO
-
GIẢI TOÁN 6 SỐ VÀ ĐẠI SỐ TẬP 2 CHÂN TRỜI SÁNG TẠO
-
GIẢI TOÁN 6 HÌNH HỌC VÀ ĐO LƯỜNG TẬP 2 CHÂN TRỜI SÁNG TẠO
-
GIẢI TOÁN 6 MỘT SỐ YẾU TỐ THỐNG KÊ VÀ XÁC XUẤT TẬP 2 CHÂN TRỜI SÁNG TẠO
Lý thuyết Chia hết và chia có dư. Tính chất chia hết của một tổng Toán 6 Chân trời sáng tạo
1. Chia hết và chia có dư
Cho hai số tự nhiên a và b, trong đó b khác 0. Ta luôn tìm được đúng hai số tự nhiên q và r sao cho
a = b. q + r, trong đó \(0 \le r < b\). Ta gọi q và r lần lượt là thương và số dư trong phép chia a cho b.
- Nếu r = 0 tức a = b . q, ta nói a chia hết cho b, kí hiệu a\( \vdots \)b và ta có phép chia hết a : b = q.
- Nếu \(r \ne 0\), ta nói a không hết cho b, kí hiệu a \(\not{ \vdots }\) b và ta có phép chia có dư.
2. Tính chất chia hết của một tổng
Tính chất 1
Cho a, b, n là các số tự nhiên, n khác 0.
Nếu a\( \vdots \)n và b\( \vdots \)n thì (a + b)\( \vdots \)n và (a - b)\( \vdots \)n \(\left( {a \ge b} \right)\)
Nếu a\( \vdots \)n, b\( \vdots \)n và c\( \vdots \)n thì (a + b + c)\( \vdots \)n
Trong một tổng, nếu một số hạng đều chia hết cho cùng một số thì tổng cũng chia hết cho số đó.
Tính chất 2
Cho a, b, n là các số tự nhiên, n khác 0. \(\left( {a \ge b} \right)\)
Nếu a \(\not{ \vdots }\) n và b\( \vdots \)n thì (a + b) \(\not{ \vdots }\) n và (a - b) \(\not{ \vdots }\) n
Nếu a\( \vdots \)n và b \(\not{ \vdots }\) n thì (a - b) \(\not{ \vdots }\) n
Nếu a \(\not{ \vdots }\) n, b\( \vdots \)n và c\( \vdots \)n thì (a + b + c) \(\not{ \vdots }\) n
Nếu trong một tổng chỉ có đúng một số hạng không chia hết cho một số, các số hạng còn lại đều chia hết cho số đó thì tổng không chia hết cho số đó.
CÁC DẠNG TOÁN VỀ TÍNH CHIA HẾT CỦA MỘT TỔNG
1. Xét tính chia hết của một tổng hoặc một hiệu
Phương pháp:
Áp dụng tính chất 1 và tính chất 2 về sự chia hết của một tổng, một hiệu.
Ví dụ:
a)
Ta có \(6 \vdots 3;\,9 \vdots 3;\,15 \vdots 3\, \Rightarrow 6 + 9 + 15 = 30 \vdots 3\)
b)
Ta có: \(75 \vdots 15\) và \(12\not \vdots 15\) nên \(75 + 12\not \vdots 15\) và \(75 - 12\not \vdots 15\)
c)
\(10 \vdots 5;\,15 \vdots 5;\,12\not \vdots 5 \Rightarrow 10 + 15 + 12 = 37\not \vdots 5\).
2. Tìm điều kiện của một số hạng để tổng hoặc hiệu chia hết cho một số nào đó
Phương pháp:
Áp dụng tính chất 1 và tính chất 2 để tìm điều kiện của số hạng chưa biết.
Ví dụ:
Cho tổng \(M = 105 + 72 + x\) . Để $M$ chia hết cho $3$ thì $x$ phải như thế nào?
Giải:
Vì \(105\, \vdots \,3;\,72\, \vdots \,3\) nên để \(M = 105 +72 + x\) chia hết cho \(3\) thì \(x\, \vdots \,3\).
3. Xét tính chia hết của một tích
Phương pháp:
Áp dụng tính chất: Nếu trong một tích các số tự nhiên có một thừa số chia hết cho một số nào đó thì tích cũng chia hết cho số đó.
Ví dụ:
Nếu $n$ chia hết cho $13$ thì $2n$ cũng chia hết cho $13$.
- Trả lời Hoạt động khám phá 1 trang 21 SGK Toán 6 Chân trời sáng tạo
- Trả lời Thực hành 1 trang 22 SGK Toán 6 Chân trời sáng tạo
- Trả lời Hoạt động khám phá 2 trang 22 SGK Toán 6 Chân trời sáng tạo
- Trả lời Hoạt động khám phá 3 trang 22 SGK Toán 6 Chân trời sáng tạo
- Trả lời Thực hành 2 trang 23 SGK Toán 6 Chân trời sáng tạo