Lý thuyết Định lí Pythagore và ứng dụng SGK Toán 8 - Kết nối tri thức

1. Định lí Pythagore

Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông. 

1_8.png

\(\Delta ABC,\widehat A = {90^o} \Rightarrow B{C^2} = A{B^2} + A{C^2}\)

Ví dụ:

Tam giác ABC có AB = 3cm, BC = 5cm, AC = 4cm thì tam giác ABC vuông tại A do \({3^2} + {4^2} = {5^2}\), suy ra \(B{C^2} = A{B^2} + A{C^2}\).

2. Định lí Pythagore đảo

Nếu tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông.

1_9.png

\(\Delta ABC,B{C^2} = A{B^2} + A{C^2} \Rightarrow \widehat A = {90^o}\)

3. Ứng dụng của định lí Pythagore

a. Tính độ dài đoạn thẳng

Nhận xét: Nếu tam giác vuông ABC tại A có đường cao AH = h, các cạnh BC = a, AC = b, AB = c thì h.a = b.c.

1_10.png

Ví dụ: Tam giác ABC vuông tại A có AB = 5cm, AC = 12cm thì BC = \(\sqrt {{5^2} + {{12}^2}}  = \sqrt {169}  = 13\)

b. Chứng minh tính chất hình học

Chú ý: AM là đường cao, AC, AD là đường xiên thì đoạn thẳng MC là hình chiếu của đường xiên AC và MD là hình chiếu của đường xiên AD.

 1_11.png

35-dinh-li-pythagore.png