Lý thuyết Hình nón Toán 9 Cùng khám phá

1. Hình nón

1_54.png

Chú ý:

1_55.png

Cho hình nón có bán kính đáy r, chiều cao h và đường sinh l. Khi đó \({h^2} + {r^2} = {l^2}\).

Ví dụ:

1_56.png

Hình nón có:

+ A là đỉnh;

+ chiều cao là 6cm;

+ bán kính đáy là 4cm.

+ các đường sinh là: AB, AC, AD.

2. Diện tích xung quanh của hình nón

Diện tích xung quanh của hình nón

Diện tích xung quanh \({S_{xq}}\) của hình nón có bán kính đáy r, độ dài đường sinh l là:

\({S_{xq}} = \pi rl\).

Diện tích toàn phần của hình nón

Diện tích toàn phần \({S_{tp}}\) của hình nón có bán kính đáy r, độ dài đường sinh l là:

\({S_{tp}} = {S_{xq}} + S = \pi rl + \pi {r^2}\) (S là diện tích đáy của hình nón).

Ví dụ:

1_57.png

Diện tích xung quanh của hình nón là:

\({S_{xq}} = \pi rl = \pi .6.10 = 60\pi \left( {c{m^2}} \right)\).

3. Thể tích của hình nón

Thể tích V của hình nón có bán kính đáy r và chiều cao h là:

\(V = \frac{1}{3}\pi {r^2}h\) (S là diện tích đáy của hình nón).

Ví dụ:

1_57.png

Tam giác SOB vuông tại O nên theo định lí Pythagore ta có:

\(\begin{array}{l}O{B^2} + S{O^2} = S{B^2}\\{6^2} + S{O^2} = {10^2}\\S{O^2} = 100 - 36 = 64\\SO = 8cm.\end{array}\)

Thể tích của hình nón là \(V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi {.6^2}.8 = 96\pi \left( {c{m^3}} \right)\).

chuong-9-bai-2-hinh-non.png