-
Toán 6 tập 1
-
CHƯƠNG 1.SỐ TỰ NHIÊN
- Bài 1. Tập hợp
- Bài 2. Tập hợp các số tự nhiên
- Bài 3. Phép cộng, phép trừ các số tự nhiên
- Bài 4. Phép nhân, phép chia với các số tự nhiên
- Bài 5. Phép tính lũy thừa với số mũ tự nhiên
- Bài 6. Thứ tự thực hiện các phép tính
- Bài 7. Quan hệ chia hết. Tính chất chia hết
- Bài 8. Dấu hiệu chia hết cho 2, cho 5
- Bài 9. Dấu hiệu chia hết cho 3, cho 9
- Bài 10. Số nguyên tố. Hợp số
- Bài 11. Phân tích một số ra thừa số nguyên tố
- Bài 12. Ước chung và ước chung lớn nhất
- Bài 13. Bội chung và bội chung nhỏ nhất
- Bài tập cuối chương 1
-
CHƯƠNG 2.SỐ NGUYÊN
-
CHƯƠNG 3. HÌNH HỌC TRỰC QUAN
-
-
Toán 6 tập 2
-
CHƯƠNG 4. MỘT SỐ YẾU TỐ THỐNG KÊ VÀ XÁC SUẤT
-
CHƯƠNG 5. PHÂN SỐ VÀ SỐ THẬP PHÂN
- Bài 1. Phân số với tử và mẫu là số nguyên
- Bài 2. So sánh các phân số. Hỗn số dương
- Bài 3. Phép cộng và phép trừ phân số
- Bài 4. Phép nhân và phép chia phân số
- Bài 5. Số thập phân
- Bài 6. Phép cộng và phép trừ số thập phân
- Bài 7. Phép nhân, phép chia số thập phân
- Bài 8. Ước lượng và làm tròn số
- Bài 9. Tỉ số. Tỉ số phần trăm
- Bài 10. Hai bài toán về phân số
- Bài tập cuối chương 5
- Hoạt động thực hành và trải nghiệm chủ đề 2
-
CHƯƠNG 6. HÌNH HỌC PHẲNG
-
Lý thuyết Phép trừ các số nguyên. Quy tắc dấu ngoặc Toán 6 Cánh diều
I. Phép trừ hai số nguyên
Muốn trừ số nguyên \(a\) cho số nguyên \(b,\) ta cộng \(a\) với số đối của \(b.\)
\(a-b = a + \left( { - b} \right)\)
Ví dụ 5: \(8 - 9 = 8 + \left( { - 9} \right) = - \left( {9 - 8} \right) = - 1.\)
II. Quy tắc dấu ngoặc
Trong trường hợp đơn giản:
+) Các số âm (hay dương) trong một dãy tính thường được viết trong dấu ngoặc.
+) Phép trừ được chuyển thành phép cộng nên nếu biểu thức có phép trừ ta cũng gọi là một tổng.
Ví dụ 1:
\(\begin{array}{l}3 + \left( { - 7} \right) = 3 - 7\\\left( { - 1} \right) - \left( { - 6} \right) = - 1 + 6\\\left( { - 2} \right) - \left( { - 5} \right) + \left( { - 3} \right) = - 2 + 5 - 3\end{array}\)
2. Quy tắc dấu ngoặc
+) Khi bỏ dấu ngoặc có dấu “+” đằng trước, ta giữ nguyên dấu của các số hạng trong ngoặc;
+) Khi bỏ dấu ngoặc có dấu “-” đằng trước, ta phải đổi dấu tất cả các số hạng trong dấu ngoặc: Dấu “+” thành dấu “-”, dấu “-” thành dấu “+”.
Chú ý:
Áp dụng các tính chất giao hoán, kết hợp và quy tắc dấu ngoặc, trong một biểu thức, ta có thể:
+) Thay đổi tùy ý vị trí của các số hạng kèm theo dấu của chúng.
+) Đặt dấu ngoặc để nhóm các số hạng một cách tùy ý. Khi đặt dấu ngoặc, nếu trước dấu ngoặc là dấu “ - ” thì phải đổi dấu tất cả các số hạng trong ngoặc.
Ví dụ 2: Tính tổng
a)
\(\begin{array}{l}\left( { - 43567 - 123} \right) + 43567 = - 43567 - 123 + 43567\\ = \left( { - 43567} \right) + 43567 - 123 = 0 - 123 = - 123\end{array}\)
b)
\(\begin{array}{l}561 - \left( {521 - 43 + 561} \right) = 561 - \left( {521 - 43 + 561} \right)\\ = 561 - 521 + 43 - 561 = 561 - 561 - 521 + 43\\ = - 521 + 43 = - 478\end{array}\)
c)
\(55 - 95 - 5 = \left( {55 - 95} \right) - 5 = 55 - \left( {95 + 5} \right) = - 45\)