-
Chương 1. Đa thức
-
Chương 2. Hằng đẳng thức đáng nhớ và ứng dụng
-
Các hằng đẳng thức đáng nhớ
-
Phân tích đa thức thành nhân tử
- 1. Phân tích đa thức thành nhân tử là gì? Phương pháp đặt nhân tử chung là gì? Phân tích đa thức thành nhân tử như thế nào?
- 2. Phân tích đa thức thành nhân tử là gì? Phương pháp sử dụng hằng đẳng thức là gì? Phân tích đa thức thành nhân tử bằng cách sử dụng hằng đẳng thức như thế nào?
- 3. Phân tích đa thức thành nhân tử là gì? Phương pháp nhóm hạng tử là gì? Phân tích đa thức thành nhân tử bằng cách nhóm hạng tử như thế nào?
-
-
Chương 3. Tứ giác
-
Chương 4. Định lí Thalès
-
Chương 5. Dữ liệu và biểu đồ
-
Chương 6. Phân thức đại số
-
Chương 7. Phương trình bậc nhất và hàm số bậc nhất
-
Chương 8. Mở đầu về tính xác suất của biến cố
-
Chương 9. Tam giác đồng dạng
-
Chương 10. Một số hình khối trong thực tiễn
Tính chất của hình thoi
1. Lý thuyết
Khái niệm:
Trong hình thoi:
+ Các cạnh đối song song;
+ Các góc đối bằng nhau;
+ Hai đường chéo vuông góc với nhau và cắt nhau tại trung điểm của mỗi đường;
+ Hai đường chéo là các đường phân giác của các góc ở đỉnh.
+ Hình thoi có đầy đủ tính chất của hình bình hành.
2. Ví dụ minh họa
Hình thoi ABCD có:
+ AB // CD; AD // BC
+ \(\widehat A = \widehat C;\widehat B = \widehat D\)
+ \(AC \bot BD;O = AC \cap BD \Rightarrow AO = OC;BO = OD\)
+ AC là đường phân giác của góc DAB và góc DCB; BD là đường phân giác của góc ABC và góc ADC.