- Trang chủ
- Lớp 8
- Toán học Lớp 8
- Lý thuyết Toán 8 Lớp 8
- Chương 6. Phân thức đại số
- Cộng, trừ phân thức
-
Chương 1. Đa thức
-
Chương 2. Hằng đẳng thức đáng nhớ và ứng dụng
-
Các hằng đẳng thức đáng nhớ
-
Phân tích đa thức thành nhân tử
- 1. Phân tích đa thức thành nhân tử là gì? Phương pháp đặt nhân tử chung là gì? Phân tích đa thức thành nhân tử như thế nào?
- 2. Phân tích đa thức thành nhân tử là gì? Phương pháp sử dụng hằng đẳng thức là gì? Phân tích đa thức thành nhân tử bằng cách sử dụng hằng đẳng thức như thế nào?
- 3. Phân tích đa thức thành nhân tử là gì? Phương pháp nhóm hạng tử là gì? Phân tích đa thức thành nhân tử bằng cách nhóm hạng tử như thế nào?
-
-
Chương 3. Tứ giác
-
Chương 4. Định lí Thalès
-
Chương 5. Dữ liệu và biểu đồ
-
Chương 6. Phân thức đại số
-
Chương 7. Phương trình bậc nhất và hàm số bậc nhất
-
Chương 8. Mở đầu về tính xác suất của biến cố
-
Chương 9. Tam giác đồng dạng
-
Chương 10. Một số hình khối trong thực tiễn
Trừ hai phân thức
1. Lý thuyết
- Quy tắc trừ hai phân thức cùng mẫu thức: Muốn trừ hai phân thức có cùng mẫu thức, ta trừ tử của phân thức bị trừ và giữ nguyên mẫu :
\(\frac{A}{M} - \frac{B}{M} = \frac{{A - B}}{M}\);
- Quy tắc trừ hai phân thức khác mẫu thức: Muốn trừ hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi đưa về quy tắc trừ hai phân thức có cùng mẫu thức.
- Phân thức đối:
+ Phân thức đối của phân thức \(\frac{A}{B}\) kí hiệu là \( - \frac{A}{B}\). Ta có : \(\frac{A}{B} + \left( { - \frac{A}{B}} \right) = 0.\)
+ Phân thức đối của phân thức \(\frac{A}{B}\) là \(\frac{{ - A}}{B}\) hay\( - \frac{A}{B}\).
+ Ta có: \( - \left( { - \frac{A}{B}} \right) = \frac{A}{B}\).
Phép trừ phân thức có thể chuyển thành phép cộng với phân thức đối: \(\frac{A}{B} - \frac{C}{D} = \frac{A}{B} + \left( { - \frac{C}{D}} \right)\)
2. Ví dụ minh họa
Ví dụ 1:
\(\frac{{2x - 1}}{{x - 1}} - \frac{{x - 2}}{{x - 1}} = \frac{{2x - 1 - (x - 2)}}{{x - 1}} = \frac{{2x - 1 - x + 2}}{{x - 1}} = \frac{{x + 1}}{{x - 1}}\).
Ví dụ 2:
\(\begin{array}{l}\frac{2}{{x + 1}} - \frac{2}{{1 - x}} = \frac{{2\left( {1 - x} \right)}}{{\left( {x + 1} \right)\left( {1 - x} \right)}} - \frac{{2\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {1 - x} \right)}}\\ = \frac{{2 - 2x - 2x - 2}}{{\left( {x + 1} \right)\left( {1 - x} \right)}} = \frac{{ - 4x}}{{1 - {x^2}}}\end{array}\)