- Trang chủ
- Lớp 8
- Toán học Lớp 8
- Lý thuyết Toán 8 Lớp 8
- Chương 9. Tam giác đồng dạng
- Ba trường hợp đồng dạng của tam giác
-
Chương 1. Đa thức
-
Chương 2. Hằng đẳng thức đáng nhớ và ứng dụng
-
Các hằng đẳng thức đáng nhớ
-
Phân tích đa thức thành nhân tử
- 1. Phân tích đa thức thành nhân tử là gì? Phương pháp đặt nhân tử chung là gì? Phân tích đa thức thành nhân tử như thế nào?
- 2. Phân tích đa thức thành nhân tử là gì? Phương pháp sử dụng hằng đẳng thức là gì? Phân tích đa thức thành nhân tử bằng cách sử dụng hằng đẳng thức như thế nào?
- 3. Phân tích đa thức thành nhân tử là gì? Phương pháp nhóm hạng tử là gì? Phân tích đa thức thành nhân tử bằng cách nhóm hạng tử như thế nào?
-
-
Chương 3. Tứ giác
-
Chương 4. Định lí Thalès
-
Chương 5. Dữ liệu và biểu đồ
-
Chương 6. Phân thức đại số
-
Chương 7. Phương trình bậc nhất và hàm số bậc nhất
-
Chương 8. Mở đầu về tính xác suất của biến cố
-
Chương 9. Tam giác đồng dạng
-
Chương 10. Một số hình khối trong thực tiễn
Trường hợp đồng dạng thứ nhất (c.c.c)
1. Lý thuyết
Định lí Trường hợp đồng dạng thứ nhất (cạnh – cạnh – cạnh):
Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng.
2. Ví dụ minh họa
Hai tam giác mà các cạnh có độ dài ${6}$cm, ${9}$cm, ${12}$cm và ${24}$cm, ${18}$cm, ${12}$cm đồng dạng vì ${\frac{6}{12} = \frac{9}{18} = \frac{12}{24} = \frac{1}{2}}$.
Hai tam giác mà các cạnh có độ dài ${4}$cm, ${5}$cm, ${6}$cm và ${12}$cm, ${15}$cm, ${18}$cm đồng dạng vì ${\frac{4}{12} = \frac{5}{15} = \frac{6}{18} = \frac{1}{3}}$.