Bài 1. Nguyên hàm

Giải mục 1 trang 2, 3, 4 SGK Toán 12 tập 2 - Cùng khám phá
Một hòn đá được thả rơi tự do từ miệng của một giếng cạn. Biết rằng vận tốc của hòn đá tại thời điểm t giây tính từ lúc bắt đầu thả được tính bởi v(t)=10t (m/s). a) Tìm hàm số s(t) mô tả quãng đường chuyển động (tính theo mét) của hòn đá sau t giây kể từ khi được thả. b) Tính độ sâu của giếng, biết thời gian rơi tự do của hòn đá là 2,2 giây.
Giải mục 2 trang 4, 5, 6, 7 SGK Toán 12 tập 2 - Cùng khám phá
Tìm a) \(\int {{x^{\frac{2}{3}}}dx;} \) b) \(\int {\frac{1}{{\sqrt {{x^3}} }}} dx\).
Giải mục 3 trang 8, 9 SGK Toán 12 tập 2 - Cùng khám phá
Tìm một nguyên hàm \(F(x)\) của hàm số \(f(x) = x\). Chứng minh \(2F(x)\) là một nguyên hàm của hàm số \(2f(x)\).
Giải bài tập 4.1 trang 10 SGK Toán 12 tập 2 - Cùng khám phá
Trong các cặp hàm số dưới đây, hàm số nào là một nguyên hàm của hàm số còn lại? a) (x{e^x}) và ((x - 1){e^x}); b) (frac{1}{2}{ln ^2}x) và (frac{{ln x}}{x}).
Giải bài tập 4.2 trang 10 SGK Toán 12 tập 2 - Cùng khám phá
Tìm họ nguyên hàm của các hàm số sau: a) (f(x) = 4{x^5} + frac{x}{2}) b) (f(x) = 6{x^4} - frac{{{e^x}}}{2} + sin x) c) (f(x) = {5^x} - frac{4}{{xsqrt x }} + 3)
Giải bài tập 4.3 trang 10 SGK Toán 12 tập 2 - Cùng khám phá
Tìm hàm số (f(x)), biết một nguyên hàm của (f(x)) là: a) (F(x) = xsin x + sqrt 2 ) b) (F(x) = {e^x} - sqrt x )
Giải bài tập 4.4 trang 10 SGK Toán 12 tập 2 - Cùng khám phá
Tìm một nguyên hàm \(F(x)\) của hàm số \(f(x) = 2x - {e^x}\), biết \(F(0) = - 2\).
Giải bài tập 4.5 trang 10 SGK Toán 12 tập 2 - Cùng khám phá
Biết \(F(x) = {e^x} + {x^2}\) là một nguyên hàm của hàm số \(f(x)\) trên \(\mathbb{R}\) và hàm số \(f'(x)\) liên tục trên \(\mathbb{R}\). Tìm \(\int {f'} (x){\mkern 1mu} dx\).
Giải bài tập 4.6 trang 10 SGK Toán 12 tập 2 - Cùng khám phá
Tìm họ nguyên hàm của các hàm số sau: a) \(f(x) = 3x(1 - x)\) b) \(f(x) = {3^{2x}}\) c) \(f(x) = \frac{{{x^2} - x + 2}}{{{x^2}}}\) d) \(f(x) = {(2x - 1)^2}\)
Giải bài tập 4.7 trang 10 SGK Toán 12 tập 2 - Cùng khám phá
Tìm: a) \(\int {{4^{\frac{x}{2}}}} {\mkern 1mu} dx\) b) \(\int {\frac{1}{{{{\sin }^2}x{{\cos }^2}x}}} {\mkern 1mu} dx\) c) \(\int {{e^x}} \left( {2 + \frac{{{e^{ - x}}}}{{3{{\cos }^2}x}}} \right)dx\)
Giải bài tập 4.8 trang 10 SGK Toán 12 tập 2 - Cùng khám phá
Cường độ dòng điện (đơn vị: A) trong một dây dẫn tại thời điểm t giây là: \(I(t) = Q'(t) = 3{t^2} - 6t + 5\), Với \(Q(t)\) là điện lượng (đơn vị: C) truyền trong dây dẫn tại thời điểm t. Biết khi \(t = 1\) giây, điện lượng truyền trong dây dẫn là \(Q(1) = 4\). Tính điện lượng truyền trong dây dẫn khi \(t = 3\).
Giải bài tập 4.9 trang 10 SGK Toán 12 tập 2 - Cùng khám phá
Một chiếc cốc chứa nước ở 95°C được đặt trong phòng có nhiệt độ 20°C. Theo định luật làm mát của Newton, nhiệt độ của nước trong cốc sau t phút (xem \(t = 0\) là thời điểm nước ở 95°C) là một hàm số \(T(t)\). Tốc độ giảm nhiệt độ của nước trong cốc tại thời điểm t phút được xác định bởi \(T'(t) = - \frac{3}{2}{e^{ - \frac{t}{{50}}}}\)(°C/phút). Tính nhiệt độ của nước tại thời điểm \(t = 30\) phút.