- Trang chủ
- Lớp 7
- Toán học Lớp 7
- Tài liệu Dạy - học Toán 7 Lớp 7
- CHƯƠNG 2. TAM GIÁC
- Chủ đề 4. Tam giác cân - Định lý Pythagore
-
CHƯƠNG 1. SỐ HỮU TỈ - SỐ THỰC
-
CHƯƠNG 2: HÀM SỐ VÀ ĐỒ THỊ
-
CHƯƠNG 1: ĐƯỜNG THẲNG VUÔNG GÓC – ĐƯỜNG THẲNG SONG SONG
-
CHƯƠNG 2. TAM GIÁC
-
Chủ đề 3: Tam giác - Tam giác bằng nhau
- 1. Tổng ba góc trong một tam giác
- 2. Hai tam giác bằng nhau
- 3. Trường hợp bằng nhau thứ nhất của tam giác: Cạnh - cạnh - cạnh (c.c.c)
- 4. Trường hợp bằng nhau thứ hai của tam giác: Cạnh - góc - cạnh (c.g.c)
- 5. Trường hợp bằng nhau thứ ba của tam giác: Góc - góc - góc (g.g.g)
- Bài tập - Chủ đề 3: Tam giác - Tam giác bằng nhau
- Luyện tập - Chủ đề 3: Tam giác - Tam giác bằng nhau
-
Chủ đề 4. Tam giác cân - Định lý Pythagore
-
Ôn tập chương 2 - Hình học 7
-
-
CHƯƠNG 3: THỐNG KÊ
-
CHƯƠNG 4. BIỂU THỨC ĐẠI SỐ
-
CHƯƠNG 3: QUAN HỆ GIỮA CÁC YẾU TỐ TRONG TAM GIÁC – CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC
-
Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
- 1. Quan hệ giữa góc và cạnh trong một tam giác
- 2. Quan hệ giữa đường vuông góc và đường xiên – Giữa đường xiên và hình chiếu
- 3. Quan hệ giữa ba cạnh của một tam giác bất đẳng thức tam giác
- Bài tập - Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
- Luyện tập - Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
-
Chủ đề 6 : Các đường đồng quy của tam giác
- 1. Tính chất ba đường trung tuyến của tam giác
- 2. Tính chất tia phân giác của một góc
- 3. Tính chất ba đường phân giác của tam giác
- 4. Tính chất đường trung trực của một đoạn thẳng
- 5. Tính chất ba đường trung trực của tam giác
- 6. Tính chất ba đường cao trong tam giác
- Bài tập - Chủ đề 6 : Các đường đồng quy của tam giác
- Luyện tập - Chủ đề 6 : Các đường đồng quy của tam giác
-
Ôn tập chương 3 – Hình học
-
-
ÔN TẬP CUỐI NĂM - TÀI LIỆU DẠY-HỌC TOÁN 7
Bài 2 trang 171 Tài liệu dạy – học Toán 7 tập 1
Đề bài
Cho tam giác ABC vuông tại A có AB = 9 cm, AC = 12 cm.
a) Tính độ dài BC.
b) Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho M là trung điểm của AD. Chứng minh rằng \(\Delta AMB = \Delta DMC.\)
c) Chứng minh rằng tam giác ACD vuông.
Lời giải chi tiết
a)Tam giác ABC vuông tại A (gt) \(\Rightarrow B{C^2} = A{B^2} + A{C^2}\) (định lý Pythapore)
Do đó: \(B{C^2} = {9^2} + {12^2} = 81 + 144 = 225.\)
Mà BC > 0 nên \(BC = \sqrt {225} = 15(cm).\)
b) Xét tam giác AMB và DMC ta có:
AM = DM (giả thiết)
BM = CM (M là trung điểm của BC)
\(\widehat {AMB} = \widehat {CMD}\) (hai góc đối đỉnh)
Do đó: \(\Delta AMB = \Delta DMC(c.g.c)\)
c) Ta có: \(\widehat {MBA} = \widehat {MCD}(\Delta AMB = \Delta DMC)\)
Mà hai góc MBA và MCD so le trong. Do đó: AB // CD.
Mà \(AB \bot AC(gt) \Rightarrow AC \bot CD.\) Vậy tam giác ACD vuông tại C.