Bài 4. Một số phép biến đổi căn thức bậc hai của biểu thức đại số Cánh diều

Lý thuyết Một số phép biến đổi căn thức bậc hai của biểu thức đại số Toán 9 Cánh diều
1. Căn thức bậc hai của một bình phương Quy tắc về căn thức bậc hai của một bình phương: Với mỗi biểu thức A, ta có: (sqrt {{A^2}} = left| A right|), tức là: (sqrt {{A^2}} = left| A right| = left{ begin{array}{l}A,khi,A ge 0\ - A,khi,A < 0end{array} right.)
Giải câu hỏi khởi động trang 67 SGK Toán 9 tập 1 - Cánh diều
Khí trong động cơ giãn nở từ áp suất (p_1^{}) và thể tích (V_1^{}) đến áp suất (p_2^{}) và thể tích (V_2^{}) thỏa mãn đẳng thức: (frac{{p_1^{}}}{{p_2^{}}} = left( {frac{{V_1^{}}}{{V_2^{}}}} right)_{}^2). Có thể tính được thể tích (V_1^{}) theo (p_1^{},p_2^{}) và (V_2^{}) được hay không?
Giải mục 1 trang 67 SGK Toán 9 tập 1 - Cánh diều
Tìm số thích hợp cho “?”: a. (sqrt {7_{}^2} = ?); b. (sqrt {left( { - 9} right)_{}^2} = ?); c. (sqrt {a_{}^2} = ?) với a là một số cho trước.
Giải mục 2 trang 68 SGK Toán 9 tập 1 - Cánh diều
So sánh: a. (sqrt {16.0,25} ) và (sqrt {16} .sqrt {0,25} ); b. (sqrt {a.b} ) và (sqrt a .sqrt b ) với a, b là hai số không âm.
Giải mục 3 trang 68, 69 SGK Toán 9 tập 1 - Cánh diều
So sánh: a. (sqrt {frac{{49}}{{169}}} ) và (frac{{sqrt {49} }}{{sqrt {169} }}); b. (sqrt {frac{a}{b}} ) và (frac{{sqrt a }}{{sqrt b }}) với a là số không âm, b là số dương.
Giải mục 4 trang 69, 70 SGK Toán 9 tập 1 - Cánh diều
Xét phép biến đổi: (frac{5}{{sqrt 3 }} = frac{{5sqrt 3 }}{{left( {sqrt 3 } right)_{}^2}} = frac{{5sqrt 3 }}{3}). Hãy xác định mẫu thức của mỗi biểu thức sau: (frac{5}{{sqrt 3 }};frac{{5sqrt 3 }}{3}).
Giải bài tập 1 trang 70 SGK Toán 9 tập 1 - Cánh diều
Áp dụng quy tắc về căn thức bậc hai của một bình phương, hãy rút gọn biểu thức: a. (sqrt {left( {5 - x} right)_{}^2} ) với (x ge 5); b. (sqrt {left( {x - 3} right)_{}^4} ); c. (sqrt {left( {y + 1} right)_{}^6} ) với (y < - 1).
Giải bài tập 2 trang 70 SGK Toán 9 tập 1 - Cánh diều
Áp dụng quy tắc về căn thức bậc hai của một tích, hãy rút gọn biểu thức: a. (sqrt {25left( {a + 1} right)_{}^2} ) với (a > - 1); b. (sqrt {x_{}^2left( {x - 5} right)_{}^2} ) với (x > 5); c. (sqrt {2b} .sqrt {32b} ) với (b > 0); d. (sqrt {3c} .sqrt {27c_{}^3} ) với (c > 0).
Giải bài tập 3 trang 71 SGK Toán 9 tập 1 - Cánh diều
Áp dụng quy tắc về căn thức bậc hai của một thương, hãy rút gọn biểu thức: a. (sqrt {frac{{left( {3 - a} right)_{}^2}}{9}} ) với (a > 3); b. (frac{{sqrt {75x_{}^5} }}{{sqrt {5x_{}^3} }}) với (x > 0); c. (sqrt {frac{9}{{x_{}^2 - 2x + 1}}} ) với (x > 1); d. (sqrt {frac{{x_{}^2 - 4x + 4}}{{x_{}^2 + 6x + 9}}} ) với (x ge 2).
Giải bài tập 4 trang 71 SGK Toán 9 tập 1 - Cánh diều
Trục căn thức ở mẫu: a. (frac{9}{{2sqrt 3 }}); b. (frac{2}{{sqrt a }}) với (a > 0); c. (frac{7}{{3 - sqrt 2 }}); d. (frac{5}{{sqrt x + 3}}) với (x > 0;x ne 9); e. (frac{{sqrt 3 - sqrt 2 }}{{sqrt 3 + sqrt 2 }}); g. (frac{1}{{sqrt x - sqrt 3 }}) với (x > 0,x ne 3).
Giải bài tập 5 trang 71 SGK Toán 9 tập 1 - Cánh diều
Rút gọn biểu thức: (frac{{sqrt a }}{{sqrt a - sqrt b }} - frac{{sqrt b }}{{sqrt a + sqrt b }} - frac{{2b}}{{a - b}}) với (a ge 0,b ge 0,a ne b).